Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jan 15;361(Pt 2):287–296. doi: 10.1042/0264-6021:3610287

Signal- and importin-dependent nuclear targeting of the kidney anion exchanger 1-binding protein kanadaptin.

Stefan Hübner 1, David A Jans 1, Chong-Yun Xiao 1, Anna P John 1, Detlev Drenckhahn 1
PMCID: PMC1222308  PMID: 11772400

Abstract

Kanadaptin (kidney anion exchanger adaptor protein) has recently been identified as a protein with binding activity to the cytoplasmic domain of the kidney Na(+)-independent Cl(-)/HCO(-)(3) anion exchanger 1 (kAE1). Since it is widely expressed in tissues devoid of kAE1, however, kanadaptin is likely to have additional cellular roles. This is supported by its multidomain structure, and possession of three clusters of basic amino acids exhibiting similarity to known nuclear localization sequences (NLSs). In the present study, we use immunofluorescence and subcellular fractionation approaches to demonstrate that kanadaptin is localized within the nuclei of various epithelial and non-epithelial cultured cell types. The role of the different NLSs is examined in transfection studies using plasmids encoding full-length kanadaptin with or without green fluorescent protein (GFP) as a fusion tag, as well as truncation derivatives thereof. Strong nuclear localization of fusion proteins containing amino acids 140-230 of kanadaptin, which include the sequence AVSRKRKA(193) (NLS1) was observed. Substitution of Arg(191) with a threonine residue resulted in a cytoplasmic location of the expressed protein, while NLS1 proved sufficient to target an otherwise cytoplasmically localized beta-galactosidase-GFP fusion protein to the nucleus. Using a direct binding assay we show that a fusion protein containing kanadaptin amino acids 1-231 (but not the Thr(191) substituted derivative) is recognized with nM affinity by the conventional NLS-binding importin alpha/beta heterodimer. Nuclear import studies on microinjected and permeabilized rat hepatoma cells demonstrated functionality of the NLS in nuclear targeting, with inhibition by antibodies demonstrating the requirement of both importin alpha and beta for nuclear import of kanadaptin. That kanadaptin possesses a functional importin-alpha/beta-recognized NLS explains the nuclear localization of kanadaptin in various cultured cell types, and opens up the possibility that kanadaptin may have a signalling role in the nucleus.

Full Text

The Full Text of this article is available as a PDF (282.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1997. Nucleic Acids Res. 1997 Jan 1;25(1):217–221. doi: 10.1093/nar/25.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bairoch A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res. 1993 Jul 1;21(13):3097–3103. doi: 10.1093/nar/21.13.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Briggs L. J., Stein D., Goltz J., Corrigan V. C., Efthymiadis A., Hübner S., Jans D. A. The cAMP-dependent protein kinase site (Ser312) enhances dorsal nuclear import through facilitating nuclear localization sequence/importin interaction. J Biol Chem. 1998 Aug 28;273(35):22745–22752. doi: 10.1074/jbc.273.35.22745. [DOI] [PubMed] [Google Scholar]
  5. Brosius F. C., 3rd, Alper S. L., Garcia A. M., Lodish H. F. The major kidney band 3 gene transcript predicts an amino-terminal truncated band 3 polypeptide. J Biol Chem. 1989 May 15;264(14):7784–7787. [PubMed] [Google Scholar]
  6. Brown D., Hirsch S., Gluck S. Localization of a proton-pumping ATPase in rat kidney. J Clin Invest. 1988 Dec;82(6):2114–2126. doi: 10.1172/JCI113833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen J., Vijayakumar S., Li X., Al-Awqati Q. Kanadaptin is a protein that interacts with the kidney but not the erythroid form of band 3. J Biol Chem. 1998 Jan 9;273(2):1038–1043. doi: 10.1074/jbc.273.2.1038. [DOI] [PubMed] [Google Scholar]
  9. Cohen G. B., Ren R., Baltimore D. Modular binding domains in signal transduction proteins. Cell. 1995 Jan 27;80(2):237–248. doi: 10.1016/0092-8674(95)90406-9. [DOI] [PubMed] [Google Scholar]
  10. Drenckhahn D., Schlüter K., Allen D. P., Bennett V. Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science. 1985 Dec 13;230(4731):1287–1289. doi: 10.1126/science.2933809. [DOI] [PubMed] [Google Scholar]
  11. Efthymiadis A., Briggs L. J., Jans D. A. The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem. 1998 Jan 16;273(3):1623–1628. doi: 10.1074/jbc.273.3.1623. [DOI] [PubMed] [Google Scholar]
  12. Efthymiadis A., Shao H., Hübner S., Jans D. A. Kinetic characterization of the human retinoblastoma protein bipartite nuclear localization sequence (NLS) in vivo and in vitro. A comparison with the SV40 large T-antigen NLS. J Biol Chem. 1997 Aug 29;272(35):22134–22139. doi: 10.1074/jbc.272.35.22134. [DOI] [PubMed] [Google Scholar]
  13. Hicks G. R., Smith H. M., Lobreaux S., Raikhel N. V. Nuclear import in permeabilized protoplasts from higher plants has unique features. Plant Cell. 1996 Aug;8(8):1337–1352. doi: 10.1105/tpc.8.8.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hu W., Jans D. A. Efficiency of importin alpha/beta-mediated nuclear localization sequence recognition and nuclear import. Differential role of NTF2. J Biol Chem. 1999 May 28;274(22):15820–15827. doi: 10.1074/jbc.274.22.15820. [DOI] [PubMed] [Google Scholar]
  15. Hübner S., Jans D. A., Drenckhahn D. Roles of cytoskeletal and junctional plaque proteins in nuclear signaling. Int Rev Cytol. 2001;208:207–265. doi: 10.1016/s0074-7696(01)08005-6. [DOI] [PubMed] [Google Scholar]
  16. Hübner S., Smith H. M., Hu W., Chan C. K., Rihs H. P., Paschal B. M., Raikhel N. V., Jans D. A. Plant importin alpha binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin beta. J Biol Chem. 1999 Aug 6;274(32):22610–22617. doi: 10.1074/jbc.274.32.22610. [DOI] [PubMed] [Google Scholar]
  17. Hübner S., Xiao C. Y., Jans D. A. The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T-antigen nuclear localization sequence by importin. J Biol Chem. 1997 Jul 4;272(27):17191–17195. doi: 10.1074/jbc.272.27.17191. [DOI] [PubMed] [Google Scholar]
  18. Imamoto N., Kamei Y., Yoneda Y. Nuclear transport factors: function, behavior and interaction. Eur J Histochem. 1998;42(1):9–20. [PubMed] [Google Scholar]
  19. Imamoto N., Shimamoto T., Takao T., Tachibana T., Kose S., Matsubae M., Sekimoto T., Shimonishi Y., Yoneda Y. In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. EMBO J. 1995 Aug 1;14(15):3617–3626. doi: 10.1002/j.1460-2075.1995.tb00031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jans D. A., Ackermann M. J., Bischoff J. R., Beach D. H., Peters R. p34cdc2-mediated phosphorylation at T124 inhibits nuclear import of SV-40 T antigen proteins. J Cell Biol. 1991 Dec;115(5):1203–1212. doi: 10.1083/jcb.115.5.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jans D. A., Hübner S. Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev. 1996 Jul;76(3):651–685. doi: 10.1152/physrev.1996.76.3.651. [DOI] [PubMed] [Google Scholar]
  22. Jans D. A., Peters R., Fahrenholz F. Lateral mobility of the phospholipase C-activating vasopressin V1-type receptor in A7r5 smooth muscle cells: a comparison with the adenylate cyclase-coupled V2-receptor. EMBO J. 1990 Sep;9(9):2693–2699. doi: 10.1002/j.1460-2075.1990.tb07455.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jans D. A., Peters R., Zsigo J., Fahrenholz F. The adenylate cyclase-coupled vasopressin V2-receptor is highly laterally mobile in membranes of LLC-PK1 renal epithelial cells at physiological temperature. EMBO J. 1989 Sep;8(9):2481–2488. doi: 10.1002/j.1460-2075.1989.tb08384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jans D. A. The mobile receptor hypothesis revisited: a mechanistic role for hormone receptor lateral mobility in signal transduction. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):271–276. doi: 10.1016/0304-4157(92)90001-q. [DOI] [PubMed] [Google Scholar]
  25. Jans D. A. The regulation of protein transport to the nucleus by phosphorylation. Biochem J. 1995 Nov 1;311(Pt 3):705–716. doi: 10.1042/bj3110705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kalderon D., Richardson W. D., Markham A. F., Smith A. E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature. 1984 Sep 6;311(5981):33–38. doi: 10.1038/311033a0. [DOI] [PubMed] [Google Scholar]
  27. Kalderon D., Roberts B. L., Richardson W. D., Smith A. E. A short amino acid sequence able to specify nuclear location. Cell. 1984 Dec;39(3 Pt 2):499–509. doi: 10.1016/0092-8674(84)90457-4. [DOI] [PubMed] [Google Scholar]
  28. Kollert-Jöns A., Wagner S., Hübner S., Appelhans H., Drenckhahn D. Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol. 1993 Dec;265(6 Pt 2):F813–F821. doi: 10.1152/ajprenal.1993.265.6.F813. [DOI] [PubMed] [Google Scholar]
  29. Kudrycki K. E., Shull G. E. Primary structure of the rat kidney band 3 anion exchange protein deduced from a cDNA. J Biol Chem. 1989 May 15;264(14):8185–8192. [PubMed] [Google Scholar]
  30. Kudrycki K. E., Shull G. E. Rat kidney band 3 Cl-/HCO3- exchanger mRNA is transcribed from an alternative promoter. Am J Physiol. 1993 Mar;264(3 Pt 2):F540–F547. doi: 10.1152/ajprenal.1993.264.3.F540. [DOI] [PubMed] [Google Scholar]
  31. Lanford R. E., Butel J. S. Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell. 1984 Jul;37(3):801–813. doi: 10.1016/0092-8674(84)90415-x. [DOI] [PubMed] [Google Scholar]
  32. Madsen K. M., Kim J., Tisher C. C. Intracellular band 3 immunostaining in type A intercalated cells of rabbit kidney. Am J Physiol. 1992 Jun;262(6 Pt 2):F1015–F1022. doi: 10.1152/ajprenal.1992.262.6.F1015. [DOI] [PubMed] [Google Scholar]
  33. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rihs H. P., Jans D. A., Fan H., Peters R. The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen. EMBO J. 1991 Mar;10(3):633–639. doi: 10.1002/j.1460-2075.1991.tb07991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robbins J., Dilworth S. M., Laskey R. A., Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell. 1991 Feb 8;64(3):615–623. doi: 10.1016/0092-8674(91)90245-t. [DOI] [PubMed] [Google Scholar]
  36. Saier M. H., Jr Growth and differentiated properties of a kidney epithelial cell line (MDCK). Am J Physiol. 1981 Mar;240(3):C106–C109. doi: 10.1152/ajpcell.1981.240.3.C106. [DOI] [PubMed] [Google Scholar]
  37. Schultz J., Copley R. R., Doerks T., Ponting C. P., Bork P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 2000 Jan 1;28(1):231–234. doi: 10.1093/nar/28.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schultz J., Milpetz F., Bork P., Ponting C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857–5864. doi: 10.1073/pnas.95.11.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sekimoto T., Imamoto N., Nakajima K., Hirano T., Yoneda Y. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J. 1997 Dec 1;16(23):7067–7077. doi: 10.1093/emboj/16.23.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith H. M., Hicks G. R., Raikhel N. V. Importin alpha from Arabidopsis thaliana is a nuclear import receptor that recognizes three classes of import signals. Plant Physiol. 1997 Jun;114(2):411–417. doi: 10.1104/pp.114.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sorg G., Stamminger T. Mapping of nuclear localization signals by simultaneous fusion to green fluorescent protein and to beta-galactosidase. Biotechniques. 1999 May;26(5):858–862. doi: 10.2144/99265bm12. [DOI] [PubMed] [Google Scholar]
  42. Valentich J. D. Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule. Ann N Y Acad Sci. 1981;372:384–405. doi: 10.1111/j.1749-6632.1981.tb15490.x. [DOI] [PubMed] [Google Scholar]
  43. Verlander J. W., Madsen K. M., Low P. S., Allen D. P., Tisher C. C. Immunocytochemical localization of band 3 protein in the rat collecting duct. Am J Physiol. 1988 Jul;255(1 Pt 2):F115–F125. doi: 10.1152/ajprenal.1988.255.1.F115. [DOI] [PubMed] [Google Scholar]
  44. Xiao C. Y., Hübner S., Jans D. A. SV40 large tumor antigen nuclear import is regulated by the double-stranded DNA-dependent protein kinase site (serine 120) flanking the nuclear localization sequence. J Biol Chem. 1997 Aug 29;272(35):22191–22198. doi: 10.1074/jbc.272.35.22191. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES