Abstract
The interaction of a series of DNA substrates with human DNA polymerase beta has been studied in real time by using a surface-plasmon-resonance (SPR) biosensor technique. We have prepared the sensor surfaces comprising different DNA targets, including single-stranded DNA, blunt-end double-stranded DNA, gapped DNA and DNA template-primer duplexes containing various mismatches at different positions. The binding and dissociation of polymerase beta at the DNA-modified surfaces was measured in real time, and the kinetics profiles of polymerase-DNA interaction were analysed using various physical models. The results showed that polymerase beta binding to single-stranded DNA (K(A)=1.25 x 10(8) M(-1); where K(A) is the equilibrium affinity constant) was thermodynamically more favourable than to blunt-end DNA duplex (K(A)=7.56x10(7) M(-1)) or gapped DNA (K(A)=8.53x10(7) M(-1)), with a single binding mode on each DNA substrate. However, polymerase beta bound to DNA template-primer duplexes (15 bp with a 35 nt overhang) at two sites, presumably one at the single-strand overhang and the other at the 3'-end of the primer. When the DNA duplex was fully matched, most of the polymerase beta (83%) bound to the template-primer duplex region. The introduction of different numbers of mismatches near the 3'-end of the primer caused the binding affinity and the fraction of polymerase beta bound at the duplex region to decrease 8-58-fold and 15-40%, respectively. On the other hand, the affinity of polymerase beta for the single-strand overhang remained unchanged while the fraction bound to the single-strand region increased by 15-40%. The destabilizing effect of the mismatches was due to both a decrease in the rate of binding and an increase in the rate of dissociation for polymerase beta.
Full Text
The Full Text of this article is available as a PDF (267.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbotts J., SenGupta D. N., Zmudzka B., Widen S. G., Notario V., Wilson S. H. Expression of human DNA polymerase beta in Escherichia coli and characterization of the recombinant enzyme. Biochemistry. 1988 Feb 9;27(3):901–909. doi: 10.1021/bi00403a010. [DOI] [PubMed] [Google Scholar]
- Ahn J., Kraynov V. S., Zhong X., Werneburg B. G., Tsai M. D. DNA polymerase beta: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes. Biochem J. 1998 Apr 1;331(Pt 1):79–87. doi: 10.1042/bj3310079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bondeson K., Frostell-Karlsson A., Fägerstam L., Magnusson G. Lactose repressor-operator DNA interactions: kinetic analysis by a surface plasmon resonance biosensor. Anal Biochem. 1993 Oct;214(1):245–251. doi: 10.1006/abio.1993.1484. [DOI] [PubMed] [Google Scholar]
- Budd M. E., Campbell J. L. The roles of the eukaryotic DNA polymerases in DNA repair synthesis. Mutat Res. 1997 Sep;384(3):157–167. doi: 10.1016/s0921-8777(97)00024-4. [DOI] [PubMed] [Google Scholar]
- Casas-Finet J. R., Kumar A., Morris G., Wilson S. H., Karpel R. L. Spectroscopic studies of the structural domains of mammalian DNA beta-polymerase. J Biol Chem. 1991 Oct 15;266(29):19618–19625. [PubMed] [Google Scholar]
- Chaiken I., Rosé S., Karlsson R. Analysis of macromolecular interactions using immobilized ligands. Anal Biochem. 1992 Mar;201(2):197–210. doi: 10.1016/0003-2697(92)90329-6. [DOI] [PubMed] [Google Scholar]
- Chang L. M., Bollum F. J. Low molecular weight deoxyribonucleic acid polymerase in mammalian cells. J Biol Chem. 1971 Sep 25;246(18):5835–5837. [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
- Detera S. D., Becerra S. P., Swack J. A., Wilson S. H. Studies on the mechanism of DNA polymerase alpha. Nascent chain elongation, steady state kinetics, and the initiation phase of DNA synthesis. J Biol Chem. 1981 Jul 10;256(13):6933–6943. [PubMed] [Google Scholar]
- Fisher R. J., Fivash M., Casas-Finet J., Erickson J. W., Kondoh A., Bladen S. V., Fisher C., Watson D. K., Papas T. Real-time DNA binding measurements of the ETS1 recombinant oncoproteins reveal significant kinetic differences between the p42 and p51 isoforms. Protein Sci. 1994 Feb;3(2):257–266. doi: 10.1002/pro.5560030210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammond R. A., McClung J. K., Miller M. R. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: evidence that DNA polymerases delta and beta are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine. Biochemistry. 1990 Jan 9;29(1):286–291. doi: 10.1021/bi00453a039. [DOI] [PubMed] [Google Scholar]
- Haruki M., Noguchi E., Kanaya S., Crouch R. J. Kinetic and stoichiometric analysis for the binding of Escherichia coli ribonuclease HI to RNA-DNA hybrids using surface plasmon resonance. J Biol Chem. 1997 Aug 29;272(35):22015–22022. doi: 10.1074/jbc.272.35.22015. [DOI] [PubMed] [Google Scholar]
- Johnson K. A. Conformational coupling in DNA polymerase fidelity. Annu Rev Biochem. 1993;62:685–713. doi: 10.1146/annurev.bi.62.070193.003345. [DOI] [PubMed] [Google Scholar]
- Kumar A., Abbotts J., Karawya E. M., Wilson S. H. Identification and properties of the catalytic domain of mammalian DNA polymerase beta. Biochemistry. 1990 Aug 7;29(31):7156–7159. doi: 10.1021/bi00483a002. [DOI] [PubMed] [Google Scholar]
- Kumar A., Widen S. G., Williams K. R., Kedar P., Karpel R. L., Wilson S. H. Studies of the domain structure of mammalian DNA polymerase beta. Identification of a discrete template binding domain. J Biol Chem. 1990 Feb 5;265(4):2124–2131. [PubMed] [Google Scholar]
- Kunkel T. A., Alexander P. S. The base substitution fidelity of eucaryotic DNA polymerases. Mispairing frequencies, site preferences, insertion preferences, and base substitution by dislocation. J Biol Chem. 1986 Jan 5;261(1):160–166. [PubMed] [Google Scholar]
- Liu D., DeRose E. F., Prasad R., Wilson S. H., Mullen G. P. Assignments of 1H, 15N, and 13C resonances for the backbone and side chains of the N-terminal domain of DNA polymerase beta. Determination of the secondary structure and tertiary contacts. Biochemistry. 1994 Aug 16;33(32):9537–9545. doi: 10.1021/bi00198a020. [DOI] [PubMed] [Google Scholar]
- Matsumoto Y., Kim K. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science. 1995 Aug 4;269(5224):699–702. doi: 10.1126/science.7624801. [DOI] [PubMed] [Google Scholar]
- Myszka DG. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol. 1997 Feb 1;8(1):50–57. doi: 10.1016/s0958-1669(97)80157-7. [DOI] [PubMed] [Google Scholar]
- Oda M., Furukawa K., Sarai A., Nakamura H. Kinetic analysis of DNA binding by the c-Myb DNA-binding domain using surface plasmon resonance. FEBS Lett. 1999 Jul 9;454(3):288–292. doi: 10.1016/s0014-5793(99)00833-9. [DOI] [PubMed] [Google Scholar]
- Osheroff W. P., Jung H. K., Beard W. A., Wilson S. H., Kunkel T. A. The fidelity of DNA polymerase beta during distributive and processive DNA synthesis. J Biol Chem. 1999 Feb 5;274(6):3642–3650. doi: 10.1074/jbc.274.6.3642. [DOI] [PubMed] [Google Scholar]
- Pelletier H., Sawaya M. R. Characterization of the metal ion binding helix-hairpin-helix motifs in human DNA polymerase beta by X-ray structural analysis. Biochemistry. 1996 Oct 1;35(39):12778–12787. doi: 10.1021/bi960790i. [DOI] [PubMed] [Google Scholar]
- Pelletier H., Sawaya M. R., Kumar A., Wilson S. H., Kraut J. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science. 1994 Jun 24;264(5167):1891–1903. [PubMed] [Google Scholar]
- Pelletier H., Sawaya M. R., Wolfle W., Wilson S. H., Kraut J. Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity. Biochemistry. 1996 Oct 1;35(39):12742–12761. doi: 10.1021/bi952955d. [DOI] [PubMed] [Google Scholar]
- Prasad R., Beard W. A., Chyan J. Y., Maciejewski M. W., Mullen G. P., Wilson S. H. Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase beta as revealed by site-directed mutagenesis. DNA binding and 5'-deoxyribose phosphate lyase activities. J Biol Chem. 1998 May 1;273(18):11121–11126. doi: 10.1074/jbc.273.18.11121. [DOI] [PubMed] [Google Scholar]
- Prasad R., Beard W. A., Wilson S. H. Studies of gapped DNA substrate binding by mammalian DNA polymerase beta. Dependence on 5'-phosphate group. J Biol Chem. 1994 Jul 8;269(27):18096–18101. [PubMed] [Google Scholar]
- Rajendran S., Jezewska M. J., Bujalowski W. Human DNA polymerase beta recognizes single-stranded DNA using two different binding modes. J Biol Chem. 1998 Nov 20;273(47):31021–31031. doi: 10.1074/jbc.273.47.31021. [DOI] [PubMed] [Google Scholar]
- Sawaya M. R., Pelletier H., Kumar A., Wilson S. H., Kraut J. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science. 1994 Jun 24;264(5167):1930–1935. doi: 10.1126/science.7516581. [DOI] [PubMed] [Google Scholar]
- Schuck P. Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport. Biophys J. 1996 Mar;70(3):1230–1249. doi: 10.1016/S0006-3495(96)79681-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SenGupta D. N., Zmudzka B. Z., Kumar P., Cobianchi F., Skowronski J., Wilson S. H. Sequence of human DNA polymerase beta mRNA obtained through cDNA cloning. Biochem Biophys Res Commun. 1986 Apr 14;136(1):341–347. doi: 10.1016/0006-291x(86)90916-2. [DOI] [PubMed] [Google Scholar]
- Singhal R. K., Wilson S. H. Short gap-filling synthesis by DNA polymerase beta is processive. J Biol Chem. 1993 Jul 25;268(21):15906–15911. [PubMed] [Google Scholar]
- Sobol R. W., Horton J. K., Kühn R., Gu H., Singhal R. K., Prasad R., Rajewsky K., Wilson S. H. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature. 1996 Jan 11;379(6561):183–186. doi: 10.1038/379183a0. [DOI] [PubMed] [Google Scholar]
- Tanabe K., Bohn E. W., Wilson S. H. Steady-state kinetics of mouse DNA polymerase beta. Biochemistry. 1979 Jul 24;18(15):3401–3406. doi: 10.1021/bi00582a029. [DOI] [PubMed] [Google Scholar]
- Wang T. S., Korn D. Reactivity of KB cell deoxyribonucleic acid polymerases alpha and beta with nicked and gapped deoxyribonucleic acid. Biochemistry. 1980 Apr 29;19(9):1782–1790. doi: 10.1021/bi00550a009. [DOI] [PubMed] [Google Scholar]
- Wang T. S., Korn D. Specificity of the catalytic interaction of human DNA polymerase beta with nucleic acid substrates. Biochemistry. 1982 Mar 30;21(7):1597–1608. doi: 10.1021/bi00536a021. [DOI] [PubMed] [Google Scholar]
- Wilson S., Abbotts J., Widen S. Progress toward molecular biology of DNA polymerase beta. Biochim Biophys Acta. 1988 Feb 28;949(2):149–157. doi: 10.1016/0167-4781(88)90078-4. [DOI] [PubMed] [Google Scholar]
- Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
- Zmudzka B. Z., Fornace A., Collins J., Wilson S. H. Characterization of DNA polymerase beta mRNA: cell-cycle and growth response in cultured human cells. Nucleic Acids Res. 1988 Oct 25;16(20):9587–9596. doi: 10.1093/nar/16.20.9587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zmudzka B. Z., SenGupta D., Matsukage A., Cobianchi F., Kumar P., Wilson S. H. Structure of rat DNA polymerase beta revealed by partial amino acid sequencing and cDNA cloning. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5106–5110. doi: 10.1073/pnas.83.14.5106. [DOI] [PMC free article] [PubMed] [Google Scholar]
