Abstract
We report the characterization of a new gene encoding an acidic protein named Orchestin. This protein is a component of the organic matrix of calcium storage structures (calcareous concretions) elaborated during the moulting cycles of the terrestrial crustacean Orchestia cavimana. The deduced molecular mass of Orchestin is estimated to be 12.4 kDa and the pI to be 4.4, whereas the native protein extracted from the calcium deposits migrates as a 23 kDa band on SDS/PAGE. This discrepancy is probably due to the richness of this protein in acidic amino acids (approx. 30%). The protein obtained by expressing the Orchestin cDNA in Escherichia coli presents an electrophoretic mobility of 25 kDa. Antibodies raised against the recombinant protein recognize the 23 kDa native protein exclusively among the organic-matrix components. Spatiotemporal analysis of the expression of the orchestin gene shows that it is expressed only in the storage organ cells when the concretions are elaborated during the premoult period and also, to a smaller extent, during the postmoult period. The translation products are expressed in accordance with the transcript expression during both the premoult and postmoult periods. Study of the hormonal stimulation of orchestin reveals that 20-hydroxyecdysone induces this gene as a secondary-response or late-response gene.
Full Text
The Full Text of this article is available as a PDF (300.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen S. O., Højrup P., Roepstorff P. Insect cuticular proteins. Insect Biochem Mol Biol. 1995 Feb;25(2):153–176. doi: 10.1016/0965-1748(94)00052-j. [DOI] [PubMed] [Google Scholar]
- Ashburner M., Chihara C., Meltzer P., Richards G. Temporal control of puffing activity in polytene chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:655–662. doi: 10.1101/sqb.1974.038.01.070. [DOI] [PubMed] [Google Scholar]
- Blom N., Gammeltoft S., Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999 Dec 17;294(5):1351–1362. doi: 10.1006/jmbi.1999.3310. [DOI] [PubMed] [Google Scholar]
- Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brendel V., Bucher P., Nourbakhsh I. R., Blaisdell B. E., Karlin S. Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2002–2006. doi: 10.1073/pnas.89.6.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celano P., Vertino P. M., Casero R. A., Jr Isolation of polyadenylated RNA from cultured cells and intact tissues. Biotechniques. 1993 Jul;15(1):26–28. [PubMed] [Google Scholar]
- Dean D. M., Sanders M. M. Ten years after: reclassification of steroid-responsive genes. Mol Endocrinol. 1996 Dec;10(12):1489–1495. doi: 10.1210/mend.10.12.8961259. [DOI] [PubMed] [Google Scholar]
- Dunker A. K., Rueckert R. R. Observations on molecular weight determinations on polyacrylamide gel. J Biol Chem. 1969 Sep 25;244(18):5074–5080. [PubMed] [Google Scholar]
- Endo H., Persson P., Watanabe T. Molecular cloning of the crustacean DD4 cDNA encoding a Ca(2+)-binding protein. Biochem Biophys Res Commun. 2000 Sep 16;276(1):286–291. doi: 10.1006/bbrc.2000.3446. [DOI] [PubMed] [Google Scholar]
- Fernandez J., DeMott M., Atherton D., Mische S. M. Internal protein sequence analysis: enzymatic digestion for less than 10 micrograms of protein bound to polyvinylidene difluoride or nitrocellulose membranes. Anal Biochem. 1992 Mar;201(2):255–264. doi: 10.1016/0003-2697(92)90336-6. [DOI] [PubMed] [Google Scholar]
- Geisler N., Fischer S., Vandekerckhove J., Plessmann U., Weber K. Hybrid character of a large neurofilament protein (NF-M): intermediate filament type sequence followed by a long and acidic carboxy-terminal extension. EMBO J. 1984 Nov;3(11):2701–2706. doi: 10.1002/j.1460-2075.1984.tb02196.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graf F., Delbecque J. P. Ecdysteroid titers during the molt cycle of Orchestia cavimana (Crustacea, Amphipoda). Gen Comp Endocrinol. 1987 Jan;65(1):23–33. doi: 10.1016/0016-6480(87)90218-8. [DOI] [PubMed] [Google Scholar]
- Hattan S. J., Laue T. M., Chasteen N. D. Purification and characterization of a novel calcium-binding protein from the extrapallial fluid of the mollusc, Mytilus edulis. J Biol Chem. 2000 Nov 17;276(6):4461–4468. doi: 10.1074/jbc.M006803200. [DOI] [PubMed] [Google Scholar]
- Ikeya T., Persson P., Kono M., Watanabe T. The DD5 gene of the decapod crustacean Penaeus japonicus encodes a putative exoskeletal protein with a novel tandem repeat structure. Comp Biochem Physiol B Biochem Mol Biol. 2001 Mar;128(3):379–388. doi: 10.1016/s1096-4959(00)00335-3. [DOI] [PubMed] [Google Scholar]
- Inoue H., Ozaki N., Nagasawa H. Purification and structural determination of a phosphorylated peptide with anti-calcification and chitin-binding activities in the exoskeleton of the crayfish, Procambarus clarkii. Biosci Biotechnol Biochem. 2001 Aug;65(8):1840–1848. doi: 10.1271/bbb.65.1840. [DOI] [PubMed] [Google Scholar]
- Ishii K., Tsutsui N., Watanabe T., Yanagisawa T., Nagasawa H. Solubilization and chemical characterization of an insoluble matrix protein in the gastroliths of a crayfish, Procambarus clarkii. Biosci Biotechnol Biochem. 1998 Feb;62(2):291–296. doi: 10.1271/bbb.62.291. [DOI] [PubMed] [Google Scholar]
- Ishii K., Yanagisawa T., Nagasawa H. Characterization of a matrix protein in the gastroliths of the crayfish Procambarus clarkii. Biosci Biotechnol Biochem. 1996 Sep;60(9):1479–1482. doi: 10.1271/bbb.60.1479. [DOI] [PubMed] [Google Scholar]
- Kollberg U., Obermaier B., Hirsch H., Kelber G., Wolbert P. Expression cloning and characterization of a pupal cuticle protein cDNA of Galleria mellonella L. Insect Biochem Mol Biol. 1995 Mar;25(3):355–363. doi: 10.1016/0965-1748(94)00079-w. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lowenstam H. A. Minerals formed by organisms. Science. 1981 Mar 13;211(4487):1126–1131. doi: 10.1126/science.7008198. [DOI] [PubMed] [Google Scholar]
- Luquet G., Testenière O., Graf F. Characterization and N-terminal sequencing of a calcium binding protein from the calcareous concretion organic matrix of the terrestrial crustacean Orchestia cavimana. Biochim Biophys Acta. 1996 Apr 16;1293(2):272–276. doi: 10.1016/0167-4838(95)00266-9. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
- Miyamoto H., Miyashita T., Okushima M., Nakano S., Morita T., Matsushiro A. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9657–9660. doi: 10.1073/pnas.93.18.9657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sauter A., Staudenmann W., Hughes G. J., Heizmann C. W. A novel EF-hand Ca(2+)-binding protein from abdominal muscle of crustaceans with similarity to calcyphosine from dog thyroidea. Eur J Biochem. 1995 Jan 15;227(1-2):97–101. doi: 10.1111/j.1432-1033.1995.tb20363.x. [DOI] [PubMed] [Google Scholar]
- Sudo S., Fujikawa T., Nagakura T., Ohkubo T., Sakaguchi K., Tanaka M., Nakashima K., Takahashi T. Structures of mollusc shell framework proteins. Nature. 1997 Jun 5;387(6633):563–564. doi: 10.1038/42391. [DOI] [PubMed] [Google Scholar]
- Thummel C. S. Flies on steroids--Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet. 1996 Aug;12(8):306–310. doi: 10.1016/0168-9525(96)10032-9. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueno M., Bidmon H. J., Stumpf W. E. Ecdysteroid binding sites in gastrolith forming tissue and stomach during the molting cycle of crayfish Procambarus clarkii. Histochemistry. 1992 Aug;98(1):1–6. doi: 10.1007/BF00716931. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Persson P., Endo H., Kono M. Molecular analysis of two genes, DD9A and B, which are expressed during the postmolt stage in the decapod crustacean Penaeus japonicus. Comp Biochem Physiol B Biochem Mol Biol. 2000 Jan;125(1):127–136. doi: 10.1016/s0305-0491(99)00153-4. [DOI] [PubMed] [Google Scholar]
- Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
- Weiner S. Aspartic acid-rich proteins: major components of the soluble organic matrix of mollusk shells. Calcif Tissue Int. 1979 Nov 26;29(2):163–167. doi: 10.1007/BF02408072. [DOI] [PubMed] [Google Scholar]
- Weiner S., Hood L. Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science. 1975 Dec 5;190(4218):987–989. doi: 10.1126/science.1188379. [DOI] [PubMed] [Google Scholar]
- Weiner S., Noff D., Meyer M. S., Weisman Y., Edelstein S. Metabolism of cholecalciferol in land snails. Biochem J. 1979 Oct 15;184(1):157–161. doi: 10.1042/bj1840157. [DOI] [PMC free article] [PubMed] [Google Scholar]