Abstract
The three small Maf proteins, MafF, MafG and MafK, have been implicated in a number of physiological processes, including development, differentiation, haematopoiesis and stress response. Here we report the constitutive expression of mafF, mafG and mafK in six human cell lines derived from various tissues (HepG2, IMR-32, K-562, HEK-293, RD and A549). The expression patterns of mafF, mafG and mafK varied widely among cell lines. Because small Maf proteins have been implicated in electrophile response element (EpRE)-mediated stress response, the ability of three EpRE activators [pyrrolidinedithiocarbamate (PDTC), phenylethyl isothiocyanate (PEITC) and t-butylhydroquinone (tBHQ)] to induce small Maf expression was examined in detail in HepG2 cells. Both PDTC and PEITC induced mafF, mafG and mafK expression, whereas tBHQ failed to markedly induce any of the three small Mafs. Where a response was observed, mafF was induced to the greatest extent compared with mafG and mafK, and this response was transcriptionally mediated. PDTC also induced small Maf expression in the other cell lines examined, with patterns of induction varying among cell lines. The differences in expression among the cell lines examined, coupled with the induction patterns observed, indicate that the three small maf genes are stress-responsive, but may be regulated via differing mechanisms. Furthermore, the fact that tBHQ, PDTC and PEITC induce EpRE activity, but that tBHQ fails to markedly induce any of the small Mafs, suggests that up-regulation of small Mafs is not an absolute requirement for EpRE-mediated gene expression.
Full Text
The Full Text of this article is available as a PDF (263.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews N. C., Kotkow K. J., Ney P. A., Erdjument-Bromage H., Tempst P., Orkin S. H. The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11488–11492. doi: 10.1073/pnas.90.24.11488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blank V., Andrews N. C. The Maf transcription factors: regulators of differentiation. Trends Biochem Sci. 1997 Nov;22(11):437–441. doi: 10.1016/s0968-0004(97)01105-5. [DOI] [PubMed] [Google Scholar]
- Blank V., Kim M. J., Andrews N. C. Human MafG is a functional partner for p45 NF-E2 in activating globin gene expression. Blood. 1997 Jun 1;89(11):3925–3935. [PubMed] [Google Scholar]
- Burkitt M. J., Bishop H. S., Milne L., Tsang S. Y., Provan G. J., Nobel C. S., Orrenius S., Slater A. F. Dithiocarbamate toxicity toward thymocytes involves their copper-catalyzed conversion to thiuram disulfides, which oxidize glutathione in a redox cycle without the release of reactive oxygen species. Arch Biochem Biophys. 1998 May 1;353(1):73–84. doi: 10.1006/abbi.1998.0618. [DOI] [PubMed] [Google Scholar]
- Chan J. Y., Kwong M. Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim Biophys Acta. 2000 Dec 15;1517(1):19–26. doi: 10.1016/s0167-4781(00)00238-4. [DOI] [PubMed] [Google Scholar]
- Crawford D. R., Leahy K. P., Wang Y., Schools G. P., Kochheiser J. C., Davies K. J. Oxidative stress induces the levels of a MafG homolog in hamster HA-1 cells. Free Radic Biol Med. 1996;21(4):521–525. doi: 10.1016/0891-5849(96)00160-8. [DOI] [PubMed] [Google Scholar]
- Eklind K. I., Morse M. A., Chung F. L. Distribution and metabolism of the natural anticarcinogen phenethyl isothiocyanate in A/J mice. Carcinogenesis. 1990 Nov;11(11):2033–2036. doi: 10.1093/carcin/11.11.2033. [DOI] [PubMed] [Google Scholar]
- Favreau L. V., Pickett C. B. The rat quinone reductase antioxidant response element. Identification of the nucleotide sequence required for basal and inducible activity and detection of antioxidant response element-binding proteins in hepatoma and non-hepatoma cell lines. J Biol Chem. 1995 Oct 13;270(41):24468–24474. doi: 10.1074/jbc.270.41.24468. [DOI] [PubMed] [Google Scholar]
- Fei P., Matwyshyn G. A., Rushmore T. H., Kong A. N. Transcription regulation of rat glutathione S-transferase Ya subunit gene expression by chemopreventive agents. Pharm Res. 1996 Jul;13(7):1043–1048. doi: 10.1023/a:1016006707613. [DOI] [PubMed] [Google Scholar]
- Fujiwara K. T., Kataoka K., Nishizawa M. Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene. 1993 Sep;8(9):2371–2380. [PubMed] [Google Scholar]
- Hale T. K., Myers C., Maitra R., Kolzau T., Nishizawa M., Braithwaite A. W. Maf transcriptionally activates the mouse p53 promoter and causes a p53-dependent cell death. J Biol Chem. 2000 Jun 16;275(24):17991–17999. doi: 10.1074/jbc.M000921200. [DOI] [PubMed] [Google Scholar]
- He C. H., Gong P., Hu B., Stewart D., Choi M. E., Choi A. M., Alam J. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem. 2001 Mar 26;276(24):20858–20865. doi: 10.1074/jbc.M101198200. [DOI] [PubMed] [Google Scholar]
- Igarashi K., Itoh K., Motohashi H., Hayashi N., Matuzaki Y., Nakauchi H., Nishizawa M., Yamamoto M. Activity and expression of murine small Maf family protein MafK. J Biol Chem. 1995 Mar 31;270(13):7615–7624. doi: 10.1074/jbc.270.13.7615. [DOI] [PubMed] [Google Scholar]
- Igarashi K., Kataoka K., Itoh K., Hayashi N., Nishizawa M., Yamamoto M. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature. 1994 Feb 10;367(6463):568–572. doi: 10.1038/367568a0. [DOI] [PubMed] [Google Scholar]
- Ishii T., Itoh K., Takahashi S., Sato H., Yanagawa T., Katoh Y., Bannai S., Yamamoto M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem. 2000 May 26;275(21):16023–16029. doi: 10.1074/jbc.275.21.16023. [DOI] [PubMed] [Google Scholar]
- Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997 Jul 18;236(2):313–322. doi: 10.1006/bbrc.1997.6943. [DOI] [PubMed] [Google Scholar]
- Itoh K., Igarashi K., Hayashi N., Nishizawa M., Yamamoto M. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol. 1995 Aug;15(8):4184–4193. doi: 10.1128/mcb.15.8.4184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnsen O., Murphy P., Prydz H., Kolsto A. B. Interaction of the CNC-bZIP factor TCF11/LCR-F1/Nrf1 with MafG: binding-site selection and regulation of transcription. Nucleic Acids Res. 1998 Jan 15;26(2):512–520. doi: 10.1093/nar/26.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnsen O., Skammelsrud N., Luna L., Nishizawa M., Prydz H., Kolstø A. B. Small Maf proteins interact with the human transcription factor TCF11/Nrf1/LCR-F1. Nucleic Acids Res. 1996 Nov 1;24(21):4289–4297. doi: 10.1093/nar/24.21.4289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kataoka K., Igarashi K., Itoh K., Fujiwara K. T., Noda M., Yamamoto M., Nishizawa M. Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Mol Cell Biol. 1995 Apr;15(4):2180–2190. doi: 10.1128/mcb.15.4.2180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kataoka K., Nishizawa M., Kawai S. Structure-function analysis of the maf oncogene product, a member of the b-Zip protein family. J Virol. 1993 Apr;67(4):2133–2141. doi: 10.1128/jvi.67.4.2133-2141.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kataoka K., Noda M., Nishizawa M. Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol. 1994 Jan;14(1):700–712. doi: 10.1128/mcb.14.1.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerppola T. K., Curran T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene. 1994 Nov;9(11):3149–3158. [PubMed] [Google Scholar]
- Marini M. G., Chan K., Casula L., Kan Y. W., Cao A., Moi P. hMAF, a small human transcription factor that heterodimerizes specifically with Nrf1 and Nrf2. J Biol Chem. 1997 Jun 27;272(26):16490–16497. doi: 10.1074/jbc.272.26.16490. [DOI] [PubMed] [Google Scholar]
- Mennicke W. H., Görler K., Krumbiegel G., Lorenz D., Rittmann N. Studies on the metabolism and excretion of benzyl isothiocyanate in man. Xenobiotica. 1988 Apr;18(4):441–447. doi: 10.3109/00498258809041680. [DOI] [PubMed] [Google Scholar]
- Motohashi H., Katsuoka F., Shavit J. A., Engel J. D., Yamamoto M. Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins. Cell. 2000 Dec 8;103(6):865–875. doi: 10.1016/s0092-8674(00)00190-2. [DOI] [PubMed] [Google Scholar]
- Murphy P., Kolstø A. Expression of the bZIP transcription factor TCF11 and its potential dimerization partners during development. Mech Dev. 2000 Oct;97(1-2):141–148. doi: 10.1016/s0925-4773(00)00413-5. [DOI] [PubMed] [Google Scholar]
- Nguyen T., Huang H. C., Pickett C. B. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem. 2000 May 19;275(20):15466–15473. doi: 10.1074/jbc.M000361200. [DOI] [PubMed] [Google Scholar]
- Nobel C. I., Kimland M., Lind B., Orrenius S., Slater A. F. Dithiocarbamates induce apoptosis in thymocytes by raising the intracellular level of redox-active copper. J Biol Chem. 1995 Nov 3;270(44):26202–26208. doi: 10.1074/jbc.270.44.26202. [DOI] [PubMed] [Google Scholar]
- Novotny V., Prieschl E. E., Csonga R., Fabjani G., Baumruker T. Nrf1 in a complex with fosB, c-jun, junD and ATF2 forms the AP1 component at the TNF alpha promoter in stimulated mast cells. Nucleic Acids Res. 1998 Dec 1;26(23):5480–5485. doi: 10.1093/nar/26.23.5480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onodera K., Shavit J. A., Motohashi H., Katsuoka F., Akasaka J. E., Engel J. D., Yamamoto M. Characterization of the murine mafF gene. J Biol Chem. 1999 Jul 23;274(30):21162–21169. doi: 10.1074/jbc.274.30.21162. [DOI] [PubMed] [Google Scholar]
- Onodera K., Shavit J. A., Motohashi H., Yamamoto M., Engel J. D. Perinatal synthetic lethality and hematopoietic defects in compound mafG::mafK mutant mice. EMBO J. 2000 Mar 15;19(6):1335–1345. doi: 10.1093/emboj/19.6.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinkus R., Weiner L. M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J Biol Chem. 1996 Jun 7;271(23):13422–13429. doi: 10.1074/jbc.271.23.13422. [DOI] [PubMed] [Google Scholar]
- Prestera T., Talalay P. Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8965–8969. doi: 10.1073/pnas.92.19.8965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rushmore T. H., Morton M. R., Pickett C. B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991 Jun 25;266(18):11632–11639. [PubMed] [Google Scholar]
- STROEMME J. H. INTERACTIONS OF DISULFIRAM AND DIETHYLDITHIOCARBAMATE WITH SERUM PROTEINS STUDIED BY MEANS OF GEL-FILTRATION TECHNIQUE. Biochem Pharmacol. 1965 Apr;14:381–391. doi: 10.1016/0006-2952(65)90212-1. [DOI] [PubMed] [Google Scholar]
- Shapiro T. A., Fahey J. W., Wade K. L., Stephenson K. K., Talalay P. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev. 1998 Dec;7(12):1091–1100. [PubMed] [Google Scholar]
- Shavit J. A., Motohashi H., Onodera K., Akasaka J., Yamamoto M., Engel J. D. Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice. Genes Dev. 1998 Jul 15;12(14):2164–2174. doi: 10.1101/gad.12.14.2164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki T., Blank V., Sesay J. S., Crawford D. R. Maf genes are involved in multiple stress response in human. Biochem Biophys Res Commun. 2001 Jan 12;280(1):4–8. doi: 10.1006/bbrc.2000.4064. [DOI] [PubMed] [Google Scholar]
- Toki T., Itoh J., Kitazawa J., Arai K., Hatakeyama K., Akasaka J., Igarashi K., Nomura N., Yokoyama M., Yamamoto M. Human small Maf proteins form heterodimers with CNC family transcription factors and recognize the NF-E2 motif. Oncogene. 1997 Apr 24;14(16):1901–1910. doi: 10.1038/sj.onc.1201024. [DOI] [PubMed] [Google Scholar]
- Venugopal R., Jaiswal A. K. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene. 1998 Dec 17;17(24):3145–3156. doi: 10.1038/sj.onc.1202237. [DOI] [PubMed] [Google Scholar]
- Wasserman W. W., Fahl W. E. Functional antioxidant responsive elements. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5361–5366. doi: 10.1073/pnas.94.10.5361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wild A. C., Moinova H. R., Mulcahy R. T. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem. 1999 Nov 19;274(47):33627–33636. doi: 10.1074/jbc.274.47.33627. [DOI] [PubMed] [Google Scholar]
- Wild A. C., Mulcahy R. T. Pyrrolidine dithiocarbamate up-regulates the expression of the genes encoding the catalytic and regulatory subunits of gamma-glutamylcysteine synthetase and increases intracellular glutathione levels. Biochem J. 1999 Mar 15;338(Pt 3):659–665. [PMC free article] [PubMed] [Google Scholar]
- Yamane Y., Furuichi M., Song R., Van N. T., Mulcahy R. T., Ishikawa T., Kuo M. T. Expression of multidrug resistance protein/GS-X pump and gamma-glutamylcysteine synthetase genes is regulated by oxidative stress. J Biol Chem. 1998 Nov 20;273(47):31075–31085. doi: 10.1074/jbc.273.47.31075. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Talalay P. Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes. Cancer Res. 1998 Oct 15;58(20):4632–4639. [PubMed] [Google Scholar]