Abstract
cADP-ribose (cADPR) is a novel cyclic nucleotide derived from NAD(+) that has now been established as a general Ca(2+) messenger in a wide variety of cells. Despite the obvious importance of monitoring its cellular levels under various physiological conditions, its measurement has been technically difficult and requires specialized reagents. In this study a widely applicable high-sensitivity assay for cADPR is described. ADP-ribosyl cyclase normally catalyses the synthesis of cADPR from NAD(+), but the reaction can be reversed in the presence of high concentrations of nicotinamide, producing NAD(+) from cADPR stoichiometrically. The resultant NAD(+) can then be coupled to a cycling assay involving alcohol dehydrogenase and diaphorase. Each time NAD(+) cycles through these coupled reactions, a molecule of highly fluorescent resorufin is generated. The reaction can be conducted for hours, resulting in more than a thousand-fold amplification of cADPR. Concentrations of cADPR in the nanomolar range can be measured routinely. The unique ability of ADP-ribosyl cyclase to catalyse the reverse reaction provides the required specificity. Using this assay, it is demonstrated that cADPR is present in all tissues tested and that the levels measured are directly comparable with those obtained using a radioimmunoassay. All the necessary reagents are widely available and the assay can be performed using a multiwell fluorescence plate reader, providing a high-throughput method for monitoring cADPR levels. This assay should be valuable in elucidating the messenger role of cADPR in cells.
Full Text
The Full Text of this article is available as a PDF (126.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aarhus R., Graeff R. M., Dickey D. M., Walseth T. F., Lee H. C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995 Dec 22;270(51):30327–30333. doi: 10.1074/jbc.270.51.30327. [DOI] [PubMed] [Google Scholar]
- Clementi E., Riccio M., Sciorati C., Nisticò G., Meldolesi J. The type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of the nitric oxide/cGMP pathway. J Biol Chem. 1996 Jul 26;271(30):17739–17745. doi: 10.1074/jbc.271.30.17739. [DOI] [PubMed] [Google Scholar]
- Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
- Galione A., White A., Willmott N., Turner M., Potter B. V., Watson S. P. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature. 1993 Sep 30;365(6445):456–459. doi: 10.1038/365456a0. [DOI] [PubMed] [Google Scholar]
- Goldberg N. D., Dietz S. B., O'Toole A. G. Cyclic guanosine 3',5'-monophosphate in mammalian tissues and urine. J Biol Chem. 1969 Aug 25;244(16):4458–4466. [PubMed] [Google Scholar]
- Graeff R. M., Franco L., De Flora A., Lee H. C. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem. 1998 Jan 2;273(1):118–125. doi: 10.1074/jbc.273.1.118. [DOI] [PubMed] [Google Scholar]
- Graeff R. M., Walseth T. F., Lee H. C. Radioimmunoassay for measuring endogenous levels of cyclic ADP-ribose in tissues. Methods Enzymol. 1997;280:230–241. doi: 10.1016/s0076-6879(97)80114-0. [DOI] [PubMed] [Google Scholar]
- Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
- Kato T., Berger S. J., Carter J. A., Lowry O. H. An enzymatic cycling method for nicotinamide-adenine dinucleotide with malic and alcohol dehydrogenases. Anal Biochem. 1973 May;53(1):86–97. doi: 10.1016/0003-2697(73)90409-0. [DOI] [PubMed] [Google Scholar]
- Khym J. X. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin Chem. 1975 Aug;21(9):1245–1252. [PubMed] [Google Scholar]
- Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem. 1995 Feb 3;270(5):2152–2157. doi: 10.1074/jbc.270.5.2152. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Aarhus R. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 1991 Mar;2(3):203–209. doi: 10.1091/mbc.2.3.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H. C., Aarhus R. Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J Cell Sci. 2000 Dec;113(Pt 24):4413–4420. doi: 10.1242/jcs.113.24.4413. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Aarhus R., Graeff R. M. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J Biol Chem. 1995 Apr 21;270(16):9060–9066. doi: 10.1074/jbc.270.16.9060. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Aarhus R., Graeff R., Gurnack M. E., Walseth T. F. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature. 1994 Jul 28;370(6487):307–309. doi: 10.1038/370307a0. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Aarhus R. Structural determinants of nicotinic acid adenine dinucleotide phosphate important for its calcium-mobilizing activity. J Biol Chem. 1997 Aug 15;272(33):20378–20383. doi: 10.1074/jbc.272.33.20378. [DOI] [PubMed] [Google Scholar]
- Lee H. C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997 Oct;77(4):1133–1164. doi: 10.1152/physrev.1997.77.4.1133. [DOI] [PubMed] [Google Scholar]
- Lee H. C. Modulator and messenger functions of cyclic ADP-ribose in calcium signaling. Recent Prog Horm Res. 1996;51:355–389. [PubMed] [Google Scholar]
- Lee H. C. NAADP: An emerging calcium signaling molecule. J Membr Biol. 2000 Jan 1;173(1):1–8. doi: 10.1007/s002320001001. [DOI] [PubMed] [Google Scholar]
- Lee H. C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol. 2001;41:317–345. doi: 10.1146/annurev.pharmtox.41.1.317. [DOI] [PubMed] [Google Scholar]
- Lee H. C. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem. 1993 Jan 5;268(1):293–299. [PubMed] [Google Scholar]
- Li P. L., Tang W. X., Valdivia H. H., Zou A. P., Campbell W. B. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am J Physiol Heart Circ Physiol. 2001 Jan;280(1):H208–H215. doi: 10.1152/ajpheart.2001.280.1.H208. [DOI] [PubMed] [Google Scholar]
- Lokuta A. J., Darszon A., Beltrán C., Valdivia H. H. Detection and functional characterization of ryanodine receptors from sea urchin eggs. J Physiol. 1998 Jul 1;510(Pt 1):155–164. doi: 10.1111/j.1469-7793.1998.155bz.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masuda W., Takenaka S., Inageda K., Nishina H., Takahashi K., Katada T., Tsuyama S., Inui H., Miyatake K., Nakano Y. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis. FEBS Lett. 1997 Mar 17;405(1):104–106. doi: 10.1016/s0014-5793(97)00168-3. [DOI] [PubMed] [Google Scholar]
- Munshi C., Lee H. C. High-level expression of recombinant Aplysia ADP-ribosyl cyclase in offhia pastoris by fermentation. Protein Expr Purif. 1997 Oct;11(1):104–110. doi: 10.1006/prep.1997.0773. [DOI] [PubMed] [Google Scholar]
- Patel S., Churchill G. C., Galione A. Coordination of Ca2+ signalling by NAADP. Trends Biochem Sci. 2001 Aug;26(8):482–489. doi: 10.1016/s0968-0004(01)01896-5. [DOI] [PubMed] [Google Scholar]
- Pérez C. F., Marengo J. J., Bull R., Hidalgo C. Cyclic ADP-ribose activates caffeine-sensitive calcium channels from sea urchin egg microsomes. Am J Physiol. 1998 Feb;274(2 Pt 1):C430–C439. doi: 10.1152/ajpcell.1998.274.2.C430. [DOI] [PubMed] [Google Scholar]
- Reyes-Harde M., Empson R., Potter B. V., Galione A., Stanton P. K. Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4061–4066. doi: 10.1073/pnas.96.7.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reyes-Harde M., Potter B. V., Galione A., Stanton P. K. Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and Ca2+ release from cyclic ADP-ribose-sensitive stores. J Neurophysiol. 1999 Sep;82(3):1569–1576. doi: 10.1152/jn.1999.82.3.1569. [DOI] [PubMed] [Google Scholar]
- Sonnleitner A., Conti A., Bertocchini F., Schindler H., Sorrentino V. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 1998 May 15;17(10):2790–2798. doi: 10.1093/emboj/17.10.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi K., Kukimoto I., Tokita K., Inageda K., Inoue S., Kontani K., Hoshino S., Nishina H., Kanaho Y., Katada T. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all-trans-retinoic acid. FEBS Lett. 1995 Sep 4;371(2):204–208. doi: 10.1016/0014-5793(95)00914-u. [DOI] [PubMed] [Google Scholar]
- Walseth T. F., Aarhus R., Zeleznikar R. J., Jr, Lee H. C. Determination of endogenous levels of cyclic ADP-ribose in rat tissues. Biochim Biophys Acta. 1991 Aug 13;1094(1):113–120. doi: 10.1016/0167-4889(91)90032-s. [DOI] [PubMed] [Google Scholar]
- Walseth T. F., Wong L., Graeff R. M., Lee H. C. Bioassay for determining endogenous levels of cyclic ADP-ribose. Methods Enzymol. 1997;280:287–294. doi: 10.1016/s0076-6879(97)80120-6. [DOI] [PubMed] [Google Scholar]
- Wu Y., Kuzma J., Maréchal E., Graeff R., Lee H. C., Foster R., Chua N. H. Abscisic acid signaling through cyclic ADP-ribose in plants. Science. 1997 Dec 19;278(5346):2126–2130. doi: 10.1126/science.278.5346.2126. [DOI] [PubMed] [Google Scholar]
- da Silva C. P., Potter B. V., Mayr G. W., Guse A. H. Quantification of intracellular levels of cyclic ADP-ribose by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1998 Apr 10;707(1-2):43–50. doi: 10.1016/s0378-4347(97)00622-1. [DOI] [PubMed] [Google Scholar]