Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):451–459. doi: 10.1042/0264-6021:3610451

Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase).

Juan I Sbodio 1, Harvey F Lodish 1, Nai-Wen Chi 1
PMCID: PMC1222327  PMID: 11802774

Abstract

The poly(ADP-ribose) polymerase (PARP) tankyrase-1 contains an ankyrin-repeat domain that binds to various partners, including the telomeric protein TRF1 (telomere-repeat-binding factor 1) and the vesicular protein IRAP (insulin-responsive aminopeptidase). TRF1 binding recruits tankyrase-1 to telomeres and allows its PARP activity to regulate telomere homoeostasis. By contrast, IRAP binding and the Golgi co-localization of tankyrase-1 with IRAP might allow tankyrase-1 to affect the targeting of IRAP-containing vesicles. A closely related protein, tankyrase-2, has also been implicated in vesicular targeting. Unlike tankyrase-1, tankyrase-2 has not been shown to have PARP activity. In addition, it has not been implicated in telomere homoeostasis, because it did not interact with TRF1 in previous studies. Here we show that tankyrase-2 contains intrinsic PARP activity and, like tankryase-1, binds to both TRF1 and IRAP. Our analysis suggests that the ankyrin (ANK) domain of tankyrase-2 comprises five subdomains that provide redundant binding sites for IRAP. Moreover, tankyrase-2 associates and co-localizes with tankyrase-1, suggesting that both tankyrases might function as a complex. Taken together, our findings indicate that tankyrase-1 and tankyrase-2 interact with the same set of proteins and probably mediate overlapping functions, both at telomeres and in vesicular compartments.

Full Text

The Full Text of this article is available as a PDF (365.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affar E. B., Germain M., Winstall E., Vodenicharov M., Shah R. G., Salvesen G. S., Poirier G. G. Caspase-3-mediated processing of poly(ADP-ribose) glycohydrolase during apoptosis. J Biol Chem. 2000 Oct 25;276(4):2935–2942. doi: 10.1074/jbc.M007269200. [DOI] [PubMed] [Google Scholar]
  2. Bork P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins. 1993 Dec;17(4):363–374. doi: 10.1002/prot.340170405. [DOI] [PubMed] [Google Scholar]
  3. Chi N. W., Lodish H. F. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J Biol Chem. 2000 Dec 8;275(49):38437–38444. doi: 10.1074/jbc.M007635200. [DOI] [PubMed] [Google Scholar]
  4. Czech M. P., Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem. 1999 Jan 22;274(4):1865–1868. doi: 10.1074/jbc.274.4.1865. [DOI] [PubMed] [Google Scholar]
  5. D'Amours D., Desnoyers S., D'Silva I., Poirier G. G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999 Sep 1;342(Pt 2):249–268. [PMC free article] [PubMed] [Google Scholar]
  6. Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553–14556. [PubMed] [Google Scholar]
  7. Fingar D. C., Birnbaum M. J. A role for Raf-1 in the divergent signaling pathways mediating insulin-stimulated glucose transport. J Biol Chem. 1994 Apr 1;269(13):10127–10132. [PubMed] [Google Scholar]
  8. Hausdorff S. F., Frangioni J. V., Birnbaum M. J. Role of p21ras in insulin-stimulated glucose transport in 3T3-L1 adipocytes. J Biol Chem. 1994 Aug 26;269(34):21391–21394. [PubMed] [Google Scholar]
  9. Herbst J. J., Ross S. A., Scott H. M., Bobin S. A., Morris N. J., Lienhard G. E., Keller S. R. Insulin stimulates cell surface aminopeptidase activity toward vasopressin in adipocytes. Am J Physiol. 1997 Apr;272(4 Pt 1):E600–E606. doi: 10.1152/ajpendo.1997.272.4.E600. [DOI] [PubMed] [Google Scholar]
  10. James P., Halladay J., Craig E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996 Dec;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kandror K. V., Yu L., Pilch P. F. The major protein of GLUT4-containing vesicles, gp160, has aminopeptidase activity. J Biol Chem. 1994 Dec 9;269(49):30777–30780. [PubMed] [Google Scholar]
  12. Keller S. R., Scott H. M., Mastick C. C., Aebersold R., Lienhard G. E. Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem. 1995 Oct 6;270(40):23612–23618. doi: 10.1074/jbc.270.40.23612. [DOI] [PubMed] [Google Scholar]
  13. Kozma L., Baltensperger K., Klarlund J., Porras A., Santos E., Czech M. P. The ras signaling pathway mimics insulin action on glucose transporter translocation. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4460–4464. doi: 10.1073/pnas.90.10.4460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuimov A. N., Kuprash D. V., Petrov V. N., Vdovichenko K. K., Scanlan M. J., Jongeneel C. V., Lagarkova M. A., Nedospasov S. A. Cloning and characterization of TNKL, a member of tankyrase gene family. Genes Immun. 2001 Feb;2(1):52–55. doi: 10.1038/sj.gene.6363722. [DOI] [PubMed] [Google Scholar]
  15. LaMarco K., Thompson C. C., Byers B. P., Walton E. M., McKnight S. L. Identification of Ets- and notch-related subunits in GA binding protein. Science. 1991 Aug 16;253(5021):789–792. doi: 10.1126/science.1876836. [DOI] [PubMed] [Google Scholar]
  16. Lyons R. J., Deane R., Lynch D. K., Ye Z. S., Sanderson G. M., Eyre H. J., Sutherland G. R., Daly R. J. Identification of a novel human tankyrase through its interaction with the adaptor protein Grb14. J Biol Chem. 2001 Feb 22;276(20):17172–17180. doi: 10.1074/jbc.M009756200. [DOI] [PubMed] [Google Scholar]
  17. Mack G. J., Ou Y., Rattner J. B. Integrating centrosome structure with protein composition and function in animal cells. Microsc Res Tech. 2000 Jun 1;49(5):409–419. doi: 10.1002/(SICI)1097-0029(20000601)49:5<409::AID-JEMT2>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  18. Michaely P., Bennett V. Mechanism for binding site diversity on ankyrin. Comparison of binding sites on ankyrin for neurofascin and the Cl-/HCO3- anion exchanger. J Biol Chem. 1995 Dec 29;270(52):31298–31302. doi: 10.1074/jbc.270.52.31298. [DOI] [PubMed] [Google Scholar]
  19. Michaely P., Bennett V. The membrane-binding domain of ankyrin contains four independently folded subdomains, each comprised of six ankyrin repeats. J Biol Chem. 1993 Oct 25;268(30):22703–22709. [PubMed] [Google Scholar]
  20. Monz D., Munnia A., Comtesse N., Fischer U., Steudel W. I., Feiden W., Glass B., Meese E. U. Novel tankyrase-related gene detected with meningioma-specific sera. Clin Cancer Res. 2001 Jan;7(1):113–119. [PubMed] [Google Scholar]
  21. Pessin J. E., Thurmond D. C., Elmendorf J. S., Coker K. J., Okada S. Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! Location! Location! J Biol Chem. 1999 Jan 29;274(5):2593–2596. doi: 10.1074/jbc.274.5.2593. [DOI] [PubMed] [Google Scholar]
  22. Peterson A. J., Kyba M., Bornemann D., Morgan K., Brock H. W., Simon J. A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions. Mol Cell Biol. 1997 Nov;17(11):6683–6692. doi: 10.1128/mcb.17.11.6683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ponting C. P. SAM: a novel motif in yeast sterile and Drosophila polyhomeotic proteins. Protein Sci. 1995 Sep;4(9):1928–1930. doi: 10.1002/pro.5560040927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Robertson L. S., Fink G. R. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13783–13787. doi: 10.1073/pnas.95.23.13783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rolli V., O'Farrell M., Ménissier-de Murcia J., de Murcia G. Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry. 1997 Oct 7;36(40):12147–12154. doi: 10.1021/bi971055p. [DOI] [PubMed] [Google Scholar]
  26. Ross S. A., Scott H. M., Morris N. J., Leung W. Y., Mao F., Lienhard G. E., Keller S. R. Characterization of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes. J Biol Chem. 1996 Feb 9;271(6):3328–3332. doi: 10.1074/jbc.271.6.3328. [DOI] [PubMed] [Google Scholar]
  27. Schultz J., Ponting C. P., Hofmann K., Bork P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci. 1997 Jan;6(1):249–253. doi: 10.1002/pro.5560060128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sedgwick S. G., Smerdon S. J. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci. 1999 Aug;24(8):311–316. doi: 10.1016/s0968-0004(99)01426-7. [DOI] [PubMed] [Google Scholar]
  29. Smith S., Giriat I., Schmitt A., de Lange T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science. 1998 Nov 20;282(5393):1484–1487. doi: 10.1126/science.282.5393.1484. [DOI] [PubMed] [Google Scholar]
  30. Smith S., de Lange T. Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J Cell Sci. 1999 Nov;112(Pt 21):3649–3656. doi: 10.1242/jcs.112.21.3649. [DOI] [PubMed] [Google Scholar]
  31. Smith S., de Lange T. Tankyrase promotes telomere elongation in human cells. Curr Biol. 2000 Oct 19;10(20):1299–1302. doi: 10.1016/s0960-9822(00)00752-1. [DOI] [PubMed] [Google Scholar]
  32. Spanò S., Silletta M. G., Colanzi A., Alberti S., Fiucci G., Valente C., Fusella A., Salmona M., Mironov A., Luini A. Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J Biol Chem. 1999 Jun 18;274(25):17705–17710. doi: 10.1074/jbc.274.25.17705. [DOI] [PubMed] [Google Scholar]
  33. Weigert R., Silletta M. G., Spanò S., Turacchio G., Cericola C., Colanzi A., Senatore S., Mancini R., Polishchuk E. V., Salmona M. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature. 1999 Nov 25;402(6760):429–433. doi: 10.1038/46587. [DOI] [PubMed] [Google Scholar]
  34. Yamamoto Y., Yoshimasa Y., Koh M., Suga J., Masuzaki H., Ogawa Y., Hosoda K., Nishimura H., Watanabe Y., Inoue G. Constitutively active mitogen-activated protein kinase kinase increases GLUT1 expression and recruits both GLUT1 and GLUT4 at the cell surface in 3T3-L1 adipocytes. Diabetes. 2000 Mar;49(3):332–339. doi: 10.2337/diabetes.49.3.332. [DOI] [PubMed] [Google Scholar]
  35. van Steensel B., de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997 Feb 20;385(6618):740–743. doi: 10.1038/385740a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES