Abstract
Tissue-non-specific alkaline phosphatase (TNSALP) is an ectoenzyme anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). A TNSALP mutant with an Asn(153)-->Asp (N153D) substitution was reported in a foetus diagnosed with perinatal hypophosphatasia (Mornet, Taillandier, Peyramaure, Kaper, Muller, Brenner, Bussiere, Freisinger, Godard, Merrer et al. (1998) Eur. J. Hum. Genet. 6, 308-314). When expressed ectopically in COS-1 cells, the wild-type TNSALP formed active non-covalently associated dimers, whereas TNSALP (N153D) formed aberrant disulphide-bonded high-molecular-mass aggregates devoid of enzyme activity. Cell-surface biotinylation and digestion with phosphatidylinositol-specific phospholipase C showed that TNSALP (N153D) failed to reach the cell surface. Instead, double immunofluorescence demonstrated that TNSALP (N153D) partially co-localized with a cis-Golgi marker (GM-130) at the steady-state. Upon treatment with brefeldin A, TNSALP (N153D) was still co-localized with GM-130, further supporting the finding that this mutant is localized in the cis-Golgi. Consistent with morphological results, pulse-chase experiments showed that newly synthesized TNSALP (N153D) remained endo-beta-N-acetylglucosaminidase H-sensitive throughout the chase. Eventually, after a prolonged chase time, the mutant was found to be partly degraded in a proteasome-dependent manner. Since the mutant TNSALP was significantly labelled with [3H]ethanolamine, a component of GPI, comparable with the wild-type enzyme, it is unlikely that the abortive synthesis of the mutant is due to a defect in GPI-attachment. Interestingly, when asparagine was replaced by glutamine at position 153 (N153D), TNSALP (N153Q) was indistinguishable from the wild-type enzyme in terms of its molecular properties, suggesting the possible importance of amino acids with a polar amide group at position 153. Taken together, these findings indicate that replacing asparagine with aspartic acid at position 153 causes misfolding and incorrect assembly of TNSALP, which results in its retention at the cis-Golgi en route to the cell surface, followed by a delayed degradation, presumably as part of a quality-control process. We postulate that the molecular basis of the perinatal hypophosphatasia associated with TNSALP (N153D) is due to the absence of mature TNSALP at the cell surface.
Full Text
The Full Text of this article is available as a PDF (255.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benham F. J., Fogh J., Harris H. Alkaline phosphatase expression in human cell lines derived from various malignancies. Int J Cancer. 1981 May 15;27(5):637–644. doi: 10.1002/ijc.2910270510. [DOI] [PubMed] [Google Scholar]
- Cole N. B., Ellenberg J., Song J., DiEuliis D., Lippincott-Schwartz J. Retrograde transport of Golgi-localized proteins to the ER. J Cell Biol. 1998 Jan 12;140(1):1–15. doi: 10.1083/jcb.140.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross G. A. Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol. 1990;6:1–39. doi: 10.1146/annurev.cb.06.110190.000245. [DOI] [PubMed] [Google Scholar]
- Dul J. L., Davis D. P., Williamson E. K., Stevens F. J., Argon Y. Hsp70 and antifibrillogenic peptides promote degradation and inhibit intracellular aggregation of amyloidogenic light chains. J Cell Biol. 2001 Feb 19;152(4):705–716. doi: 10.1083/jcb.152.4.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellgaard L., Molinari M., Helenius A. Setting the standards: quality control in the secretory pathway. Science. 1999 Dec 3;286(5446):1882–1888. doi: 10.1126/science.286.5446.1882. [DOI] [PubMed] [Google Scholar]
- Fedde K. N., Blair L., Silverstein J., Coburn S. P., Ryan L. M., Weinstein R. S., Waymire K., Narisawa S., Millán J. L., MacGregor G. R. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res. 1999 Dec;14(12):2015–2026. doi: 10.1359/jbmr.1999.14.12.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
- Field M. C., Moran P., Li W., Keller G. A., Caras I. W. Retention and degradation of proteins containing an uncleaved glycosylphosphatidylinositol signal. J Biol Chem. 1994 Apr 8;269(14):10830–10837. [PubMed] [Google Scholar]
- Fukushi-Irié M., Ito M., Amaya Y., Amizuka N., Ozawa H., Omura S., Ikehara Y., Oda K. Possible interference between tissue-non-specific alkaline phosphatase with an Arg54-->Cys substitution and acounterpart with an Asp277-->Ala substitution found in a compound heterozygote associated with severe hypophosphatasia. Biochem J. 2000 Jun 15;348(Pt 3):633–642. [PMC free article] [PubMed] [Google Scholar]
- Fukushi M., Amizuka N., Hoshi K., Ozawa H., Kumagai H., Omura S., Misumi Y., Ikehara Y., Oda K. Intracellular retention and degradation of tissue-nonspecific alkaline phosphatase with a Gly317-->Asp substitution associated with lethal hypophosphatasia. Biochem Biophys Res Commun. 1998 May 29;246(3):613–618. doi: 10.1006/bbrc.1998.8674. [DOI] [PubMed] [Google Scholar]
- Hammond C., Helenius A. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol. 1994 Jul;126(1):41–52. doi: 10.1083/jcb.126.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris H. The human alkaline phosphatases: what we know and what we don't know. Clin Chim Acta. 1990 Jan 15;186(2):133–150. doi: 10.1016/0009-8981(90)90031-m. [DOI] [PubMed] [Google Scholar]
- Henthorn P. S., Raducha M., Edwards Y. H., Weiss M. J., Slaughter C., Lafferty M. A., Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1234–1238. doi: 10.1073/pnas.84.5.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu V. W., Yuan L. C., Nuchtern J. G., Lippincott-Schwartz J., Hammerling G. J., Klausner R. D. A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature. 1991 Aug 1;352(6334):441–444. doi: 10.1038/352441a0. [DOI] [PubMed] [Google Scholar]
- Johnston J. A., Ward C. L., Kopito R. R. Aggresomes: a cellular response to misfolded proteins. J Cell Biol. 1998 Dec 28;143(7):1883–1898. doi: 10.1083/jcb.143.7.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Letourneur F., Cosson P. Targeting to the endoplasmic reticulum in yeast cells by determinants present in transmembrane domains. J Biol Chem. 1998 Dec 11;273(50):33273–33278. doi: 10.1074/jbc.273.50.33273. [DOI] [PubMed] [Google Scholar]
- Millán J. L., Manes T. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci U S A. 1988 May;85(9):3024–3028. doi: 10.1073/pnas.85.9.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mornet E. Hypophosphatasia: the mutations in the tissue-nonspecific alkaline phosphatase gene. Hum Mutat. 2000;15(4):309–315. doi: 10.1002/(SICI)1098-1004(200004)15:4<309::AID-HUMU2>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Mornet E., Taillandier A., Peyramaure S., Kaper F., Muller F., Brenner R., Bussière P., Freisinger P., Godard J., Le Merrer M. Identification of fifteen novel mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene in European patients with severe hypophosphatasia. Eur J Hum Genet. 1998 Jul-Aug;6(4):308–314. doi: 10.1038/sj.ejhg.5200190. [DOI] [PubMed] [Google Scholar]
- Müller H. L., Yamazaki M., Michigami T., Kageyama T., Schönau E., Schneider P., Ozono K. Asp361Val Mutant of alkaline phosphatase found in patients with dominantly inherited hypophosphatasia inhibits the activity of the wild-type enzyme. J Clin Endocrinol Metab. 2000 Feb;85(2):743–747. doi: 10.1210/jcem.85.2.6373. [DOI] [PubMed] [Google Scholar]
- Nakamura N., Rabouille C., Watson R., Nilsson T., Hui N., Slusarewicz P., Kreis T. E., Warren G. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol. 1995 Dec;131(6 Pt 2):1715–1726. doi: 10.1083/jcb.131.6.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narisawa S., Fröhlander N., Millán J. L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn. 1997 Mar;208(3):432–446. doi: 10.1002/(SICI)1097-0177(199703)208:3<432::AID-AJA13>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
- Oda K., Amaya Y., Fukushi-Irié M., Kinameri Y., Ohsuye K., Kubota I., Fujimura S., Kobayashi J. A general method for rapid purification of soluble versions of glycosylphosphatidylinositol-anchored proteins expressed in insect cells: an application for human tissue-nonspecific alkaline phosphatase. J Biochem. 1999 Oct;126(4):694–699. doi: 10.1093/oxfordjournals.jbchem.a022505. [DOI] [PubMed] [Google Scholar]
- Oda K., Cheng J., Saku T., Takami N., Sohda M., Misumi Y., Ikehara Y., Millán J. L. Conversion of secretory proteins into membrane proteins by fusing with a glycosylphosphatidylinositol anchor signal of alkaline phosphatase. Biochem J. 1994 Jul 15;301(Pt 2):577–583. doi: 10.1042/bj3010577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oda K., Wada I., Takami N., Fujiwara T., Misumi Y., Ikehara Y. Bip/GRP78 but not calnexin associates with a precursor of glycosylphosphatidylinositol-anchored protein. Biochem J. 1996 Jun 1;316(Pt 2):623–630. doi: 10.1042/bj3160623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shibata H., Fukushi M., Igarashi A., Misumi Y., Ikehara Y., Ohashi Y., Oda K. Defective intracellular transport of tissue-nonspecific alkaline phosphatase with an Ala162-->Thr mutation associated with lethal hypophosphatasia. J Biochem. 1998 May;123(5):968–977. doi: 10.1093/oxfordjournals.jbchem.a022032. [DOI] [PubMed] [Google Scholar]
- Storrie B., White J., Röttger S., Stelzer E. H., Suganuma T., Nilsson T. Recycling of golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J Cell Biol. 1998 Dec 14;143(6):1505–1521. doi: 10.1083/jcb.143.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waymire K. G., Mahuren J. D., Jaje J. M., Guilarte T. R., Coburn S. P., MacGregor G. R. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet. 1995 Sep;11(1):45–51. doi: 10.1038/ng0995-45. [DOI] [PubMed] [Google Scholar]
- Weiss M. J., Henthorn P. S., Lafferty M. A., Slaughter C., Raducha M., Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7182–7186. doi: 10.1073/pnas.83.19.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whyte M. P. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev. 1994 Aug;15(4):439–461. doi: 10.1210/edrv-15-4-439. [DOI] [PubMed] [Google Scholar]
- Zurutuza L., Muller F., Gibrat J. F., Taillandier A., Simon-Bouy B., Serre J. L., Mornet E. Correlations of genotype and phenotype in hypophosphatasia. Hum Mol Genet. 1999 Jun;8(6):1039–1046. doi: 10.1093/hmg/8.6.1039. [DOI] [PubMed] [Google Scholar]