Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):547–556. doi: 10.1042/0264-6021:3610547

A pH-dependent conformational transition of Abeta peptide and physicochemical properties of the conformers in the glial cell.

Yoichi Matsunaga 1, Nobuhiro Saito 1, Akihiro Fujii 1, Junichi Yokotani 1, Tadakazu Takakura 1, Tomoaki Nishimura 1, Hiroyuki Esaki 1, Tatsuo Yamada 1
PMCID: PMC1222337  PMID: 11802784

Abstract

In the present study we identified the epitopes of antibodies against amyloid beta-(1-42)-peptide (Abeta1-42): 4G8 reacted with peptides corresponding to residues 17-21, 6F/3D reacted with peptides corresponding to residues 9-14, and anti 5-10 reacted with peptides corresponding to residues 5-10. The study also yielded some insight into the Abeta1-42 structures resulting from differences in pH. An ELISA study using monoclonal antibodies showed that pH-dependent conformational changes occur in the 6F/3D and 4G8 epitopes modified at pH 4.6, but not in the sequences recognized by anti 1-7 and anti 5-10. This was unique to Abeta1-40 and Abeta1-42 and did not occur with Abeta1-16 or Abeta17-42. The reactivity profile of 4G8 was not affected by blockage of histidine residues of pH-modified Abeta1-40 and Abeta1-42 with diethyl pyrocarbonate; however, the mutant [Gln(11)]Abeta1-40 abrogated the unique pH-dependence towards 4G8 observed with Abeta1-40. These findings suggest that these epitopes are cryptic at pH 4.6, and that Glu(11) is responsible for the changes. We suggest that the abnormal folding of 6F/3D epitope affected by pH masked the 4G8 epitope. A study of the binding of metal ions to Abeta1-42 suggested that Cu(2+) and Zn(2+) induced a conformational transition around the 6F/3D region at pH 7.4, but did not affect the region when it was modified at pH 4.6. However, Fe(2+) had no effect, irrespective of pH. Abeta modified at pH 4.6 appeared to be relatively resistant to proteinase K compared with Abetas modified at pH 7.4, and the former might be preferentially internalized and accumulated in a human glial cell. Our findings suggest the importance of microenvironmental changes, such as pH, in the early stage of formation of Abeta aggregates in the glial cell.

Full Text

The Full Text of this article is available as a PDF (241.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atwood C. S., Moir R. D., Huang X., Scarpa R. C., Bacarra N. M., Romano D. M., Hartshorn M. A., Tanzi R. E., Bush A. I. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem. 1998 May 22;273(21):12817–12826. doi: 10.1074/jbc.273.21.12817. [DOI] [PubMed] [Google Scholar]
  2. Badet-Denisot M. A., Badet B. Chemical modification of glucosamine-6-phosphate synthase by diethyl pyrocarbonate: evidence of histidine requirement for enzymatic activity. Arch Biochem Biophys. 1992 Feb 1;292(2):475–478. doi: 10.1016/0003-9861(92)90018-r. [DOI] [PubMed] [Google Scholar]
  3. Barrow C. J., Yasuda A., Kenny P. T., Zagorski M. G. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra. J Mol Biol. 1992 Jun 20;225(4):1075–1093. doi: 10.1016/0022-2836(92)90106-t. [DOI] [PubMed] [Google Scholar]
  4. Booth D. R., Sunde M., Bellotti V., Robinson C. V., Hutchinson W. L., Fraser P. E., Hawkins P. N., Dobson C. M., Radford S. E., Blake C. C. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature. 1997 Feb 27;385(6619):787–793. doi: 10.1038/385787a0. [DOI] [PubMed] [Google Scholar]
  5. Borchelt D. R., Ratovitski T., van Lare J., Lee M. K., Gonzales V., Jenkins N. A., Copeland N. G., Price D. L., Sisodia S. S. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron. 1997 Oct;19(4):939–945. doi: 10.1016/s0896-6273(00)80974-5. [DOI] [PubMed] [Google Scholar]
  6. Bosque P. J., Prusiner S. B. Cultured cell sublines highly susceptible to prion infection. J Virol. 2000 May;74(9):4377–4386. doi: 10.1128/jvi.74.9.4377-4386.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burdick D., Kosmoski J., Knauer M. F., Glabe C. G. Preferential adsorption, internalization and resistance to degradation of the major isoform of the Alzheimer's amyloid peptide, A beta 1-42, in differentiated PC12 cells. Brain Res. 1997 Jan 23;746(1-2):275–284. doi: 10.1016/s0006-8993(96)01262-0. [DOI] [PubMed] [Google Scholar]
  8. Burdick D., Soreghan B., Kwon M., Kosmoski J., Knauer M., Henschen A., Yates J., Cotman C., Glabe C. Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J Biol Chem. 1992 Jan 5;267(1):546–554. [PubMed] [Google Scholar]
  9. Chung H., Brazil M. I., Soe T. T., Maxfield F. R. Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid beta-peptide by microglial cells. J Biol Chem. 1999 Nov 5;274(45):32301–32308. doi: 10.1074/jbc.274.45.32301. [DOI] [PubMed] [Google Scholar]
  10. Clements A., Allsop D., Walsh D. M., Williams C. H. Aggregation and metal-binding properties of mutant forms of the amyloid A beta peptide of Alzheimer's disease. J Neurochem. 1996 Feb;66(2):740–747. doi: 10.1046/j.1471-4159.1996.66020740.x. [DOI] [PubMed] [Google Scholar]
  11. Elbaum D., Brzyska M., Bacia A., Alkon D. L. Implication of novel biochemical property of beta-amyloid. Biochem Biophys Res Commun. 2000 Jan 27;267(3):733–738. doi: 10.1006/bbrc.1999.2024. [DOI] [PubMed] [Google Scholar]
  12. Fraser P. E., Nguyen J. T., Surewicz W. K., Kirschner D. A. pH-dependent structural transitions of Alzheimer amyloid peptides. Biophys J. 1991 Nov;60(5):1190–1201. doi: 10.1016/S0006-3495(91)82154-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Golde T. E., Estus S., Younkin L. H., Selkoe D. J., Younkin S. G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science. 1992 Feb 7;255(5045):728–730. doi: 10.1126/science.1738847. [DOI] [PubMed] [Google Scholar]
  14. Haass C., Koo E. H., Mellon A., Hung A. Y., Selkoe D. J. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature. 1992 Jun 11;357(6378):500–503. doi: 10.1038/357500a0. [DOI] [PubMed] [Google Scholar]
  15. Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., Lieberburg I., Koo E. H., Schenk D., Teplow D. B. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature. 1992 Sep 24;359(6393):322–325. doi: 10.1038/359322a0. [DOI] [PubMed] [Google Scholar]
  16. Haass C., Selkoe D. J. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell. 1993 Dec 17;75(6):1039–1042. doi: 10.1016/0092-8674(93)90312-e. [DOI] [PubMed] [Google Scholar]
  17. Halverson K., Fraser P. E., Kirschner D. A., Lansbury P. T., Jr Molecular determinants of amyloid deposition in Alzheimer's disease: conformational studies of synthetic beta-protein fragments. Biochemistry. 1990 Mar 20;29(11):2639–2644. doi: 10.1021/bi00463a003. [DOI] [PubMed] [Google Scholar]
  18. Harper J. D., Lansbury P. T., Jr Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem. 1997;66:385–407. doi: 10.1146/annurev.biochem.66.1.385. [DOI] [PubMed] [Google Scholar]
  19. Huang T. H., Yang D. S., Plaskos N. P., Go S., Yip C. M., Fraser P. E., Chakrabartty A. Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. J Mol Biol. 2000 Mar 17;297(1):73–87. doi: 10.1006/jmbi.2000.3559. [DOI] [PubMed] [Google Scholar]
  20. Inouye H., Fraser P. E., Kirschner D. A. Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction. Biophys J. 1993 Feb;64(2):502–519. doi: 10.1016/S0006-3495(93)81393-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., Multhaup G., Beyreuther K., Müller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987 Feb 19;325(6106):733–736. doi: 10.1038/325733a0. [DOI] [PubMed] [Google Scholar]
  22. Knauer M. F., Soreghan B., Burdick D., Kosmoski J., Glabe C. G. Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7437–7441. doi: 10.1073/pnas.89.16.7437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kuo Y. M., Emmerling M. R., Vigo-Pelfrey C., Kasunic T. C., Kirkpatrick J. B., Murdoch G. H., Ball M. J., Roher A. E. Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem. 1996 Feb 23;271(8):4077–4081. doi: 10.1074/jbc.271.8.4077. [DOI] [PubMed] [Google Scholar]
  24. Lee J. P., Stimson E. R., Ghilardi J. R., Mantyh P. W., Lu Y. A., Felix A. M., Llanos W., Behbin A., Cummings M., Van Criekinge M. 1H NMR of A beta amyloid peptide congeners in water solution. Conformational changes correlate with plaque competence. Biochemistry. 1995 Apr 18;34(15):5191–5200. doi: 10.1021/bi00015a033. [DOI] [PubMed] [Google Scholar]
  25. Levy E., Carman M. D., Fernandez-Madrid I. J., Power M. D., Lieberburg I., van Duinen S. G., Bots G. T., Luyendijk W., Frangione B. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science. 1990 Jun 1;248(4959):1124–1126. doi: 10.1126/science.2111584. [DOI] [PubMed] [Google Scholar]
  26. Liu S. T., Howlett G., Barrow C. J. Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A beta peptide of Alzheimer's disease. Biochemistry. 1999 Jul 20;38(29):9373–9378. doi: 10.1021/bi990205o. [DOI] [PubMed] [Google Scholar]
  27. Lovell M. A., Robertson J. D., Teesdale W. J., Campbell J. L., Markesbery W. R. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci. 1998 Jun 11;158(1):47–52. doi: 10.1016/s0022-510x(98)00092-6. [DOI] [PubMed] [Google Scholar]
  28. Miyake E. Establishment of a human oligodendroglial cell line. Acta Neuropathol. 1979 Apr 12;46(1-2):51–55. doi: 10.1007/BF00684804. [DOI] [PubMed] [Google Scholar]
  29. Nakajima M., Shinoda I., Samejima Y., Miyauchi H., Fukuwatari Y., Hayasawa H. A simple and quantitative cell-blotting assay for evaluation of pigmentation of cultured melanocytes and its use in demonstrating the depigmenting effect of lactoferrin. Arch Dermatol Res. 1997 Feb;289(3):180–183. doi: 10.1007/s004030050177. [DOI] [PubMed] [Google Scholar]
  30. Nordstedt C., Näslund J., Tjernberg L. O., Karlström A. R., Thyberg J., Terenius L. The Alzheimer A beta peptide develops protease resistance in association with its polymerization into fibrils. J Biol Chem. 1994 Dec 9;269(49):30773–30776. [PubMed] [Google Scholar]
  31. Orpiszewski J., Benson M. D. Induction of beta-sheet structure in amyloidogenic peptides by neutralization of aspartate: a model for amyloid nucleation. J Mol Biol. 1999 Jun 4;289(2):413–428. doi: 10.1006/jmbi.1999.2768. [DOI] [PubMed] [Google Scholar]
  32. Paresce D. M., Ghosh R. N., Maxfield F. R. Microglial cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor. Neuron. 1996 Sep;17(3):553–565. doi: 10.1016/s0896-6273(00)80187-7. [DOI] [PubMed] [Google Scholar]
  33. Selkoe D. J. Amyloid beta-protein and the genetics of Alzheimer's disease. J Biol Chem. 1996 Aug 2;271(31):18295–18298. doi: 10.1074/jbc.271.31.18295. [DOI] [PubMed] [Google Scholar]
  34. Serpell L. C., Smith J. M. Direct visualisation of the beta-sheet structure of synthetic Alzheimer's amyloid. J Mol Biol. 2000 May 26;299(1):225–231. doi: 10.1006/jmbi.2000.3650. [DOI] [PubMed] [Google Scholar]
  35. Shao H., Jao S., Ma K., Zagorski M. G. Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease. J Mol Biol. 1999 Jan 15;285(2):755–773. doi: 10.1006/jmbi.1998.2348. [DOI] [PubMed] [Google Scholar]
  36. Skovronsky D. M., Doms R. W., Lee V. M. Detection of a novel intraneuronal pool of insoluble amyloid beta protein that accumulates with time in culture. J Cell Biol. 1998 May 18;141(4):1031–1039. doi: 10.1083/jcb.141.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Snyder S. W., Ladror U. S., Wade W. S., Wang G. T., Barrett L. W., Matayoshi E. D., Huffaker H. J., Krafft G. A., Holzman T. F. Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths. Biophys J. 1994 Sep;67(3):1216–1228. doi: 10.1016/S0006-3495(94)80591-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Solomon B., Koppel R., Hanan E., Katzav T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):452–455. doi: 10.1073/pnas.93.1.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Soto C., Castaño E. M. The conformation of Alzheimer's beta peptide determines the rate of amyloid formation and its resistance to proteolysis. Biochem J. 1996 Mar 1;314(Pt 2):701–707. doi: 10.1042/bj3140701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wisniewski T., Ghiso J., Frangione B. Peptides homologous to the amyloid protein of Alzheimer's disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1247–1254. doi: 10.1016/0006-291x(91)91706-i. [DOI] [PubMed] [Google Scholar]
  41. Wood S. J., Maleeff B., Hart T., Wetzel R. Physical, morphological and functional differences between ph 5.8 and 7.4 aggregates of the Alzheimer's amyloid peptide Abeta. J Mol Biol. 1996 Mar 15;256(5):870–877. doi: 10.1006/jmbi.1996.0133. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES