Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):567–575. doi: 10.1042/0264-6021:3610567

Purification and molecular cloning of rat 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase.

Atsushi Tanabe 1, Yukari Egashira 1, Shin-Ichi Fukuoka 1, Katsumi Shibata 1, Hiroo Sanada 1
PMCID: PMC1222339  PMID: 11802786

Abstract

2-Amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD; EC 4.1.1.45) is one of the important enzymes regulating tryptophan-niacin metabolism. In the present study, we purified the enzyme from rat liver and kidney, and cloned the cDNA encoding rat ACMSD. The molecular masses of rat ACMSDs purified from the liver and kidney were both estimated to be 39 kDa by SDS/PAGE. Analysis of N-terminal amino acid sequences showed that these two ACMSDs share the same sequence. An expressed sequence tag (EST) of the mouse cited from the DNA database was found to be identical with this N-terminal sequence. Reverse transcription-PCR (RT-PCR) was performed using synthetic oligonucleotide primers having the partial sequences of the EST, and then cDNAs encoding rat ACMSDs were isolated by using subsequent 3'-rapid amplification of cDNA ends and RT-PCR methods. ACMSD cDNAs isolated from liver and kidney were shown to be identical, consisting of a 1008 bp open reading frame (ORF) encoding 336 amino acid residues with a molecular mass of 38091 Da. The rat ACMSD ORF was inserted into a mammalian expression vector, before transfection into human hepatoma HepG2 cells. The transfected cells expressed ACMSD activity, whereas the enzyme activity was not detected in uninfected parental HepG2 cells. The distribution of ACMSD mRNA expression in various tissues was investigated in the rat by RT-PCR. ACMSD was expressed in the liver and kidney, but not in the other principal organs examined.

Full Text

The Full Text of this article is available as a PDF (255.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberati-Giani D., Buchli R., Malherbe P., Broger C., Lang G., Köhler C., Lahm H. W., Cesura A. M. Isolation and expression of a cDNA clone encoding human kynureninase. Eur J Biochem. 1996 Jul 15;239(2):460–468. doi: 10.1111/j.1432-1033.1996.0460u.x. [DOI] [PubMed] [Google Scholar]
  2. Alberati-Giani D., Cesura A. M., Broger C., Warren W. D., Röver S., Malherbe P. Cloning and functional expression of human kynurenine 3-monooxygenase. FEBS Lett. 1997 Jun 30;410(2-3):407–412. doi: 10.1016/s0014-5793(97)00627-3. [DOI] [PubMed] [Google Scholar]
  3. Beal M. F., Ferrante R. J., Swartz K. J., Kowall N. W. Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. J Neurosci. 1991 Jun;11(6):1649–1659. doi: 10.1523/JNEUROSCI.11-06-01649.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beal M. F., Kowall N. W., Ellison D. W., Mazurek M. F., Swartz K. J., Martin J. B. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature. 1986 May 8;321(6066):168–171. doi: 10.1038/321168a0. [DOI] [PubMed] [Google Scholar]
  5. Bosco M. C., Rapisarda A., Massazza S., Melillo G., Young H., Varesio L. The tryptophan catabolite picolinic acid selectively induces the chemokines macrophage inflammatory protein-1 alpha and -1 beta in macrophages. J Immunol. 2000 Mar 15;164(6):3283–3291. doi: 10.4049/jimmunol.164.6.3283. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Dai W., Gupta S. L. Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA. Biochem Biophys Res Commun. 1990 Apr 16;168(1):1–8. doi: 10.1016/0006-291x(90)91666-g. [DOI] [PubMed] [Google Scholar]
  8. De Deyn P. P., D'Hooge R., Marescau B., Pei Y. Q. Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. Epilepsy Res. 1992 Jul;12(2):87–110. doi: 10.1016/0920-1211(92)90030-w. [DOI] [PubMed] [Google Scholar]
  9. Egashira Y., Kouhashi H., Ohta T., Sanada H. Purification and properties of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), key enzyme of niacin synthesis from tryptophan, from hog kidney. J Nutr Sci Vitaminol (Tokyo) 1996 Jun;42(3):173–183. doi: 10.3177/jnsv.42.173. [DOI] [PubMed] [Google Scholar]
  10. Egashira Y., Tanabe A., Ohta T., Sanada H. Dietary linoleic acid alters alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), a key enzyme of niacin synthesis from tryptophan, in the process of protein expression in rat liver. J Nutr Sci Vitaminol (Tokyo) 1998 Feb;44(1):129–134. doi: 10.3177/jnsv.44.129. [DOI] [PubMed] [Google Scholar]
  11. Fukuoka S. I., Nyaruhucha C. M., Shibata K. Characterization and functional expression of the cDNA encoding human brain quinolinate phosphoribosyltransferase. Biochim Biophys Acta. 1998 Jan 21;1395(2):192–201. doi: 10.1016/s0167-4781(97)00143-7. [DOI] [PubMed] [Google Scholar]
  12. Haik K. L., Shear D. A., Schroeder U., Sabel B. A., Dunbar G. L. Quinolinic acid released from polymeric brain implants causes behavioral and neuroanatomical alterations in a rodent model of Huntington's disease. Exp Neurol. 2000 Jun;163(2):430–439. doi: 10.1006/exnr.2000.7384. [DOI] [PubMed] [Google Scholar]
  13. Heyes M. P., Saito K., Lackner A., Wiley C. A., Achim C. L., Markey S. P. Sources of the neurotoxin quinolinic acid in the brain of HIV-1-infected patients and retrovirus-infected macaques. FASEB J. 1998 Jul;12(10):881–896. doi: 10.1096/fasebj.12.10.881. [DOI] [PubMed] [Google Scholar]
  14. IKEDA M., TSUJI H., NAKAMURA S., ICHIYAMA A., NISHIZUKA Y., HAYAISHI O. STUDIES ON THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. II. A ROLE OF PICOLINIC CARBOXYLASE IN THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE FROM TRYPTOPHAN IN MAMMALS. J Biol Chem. 1965 Mar;240:1395–1401. [PubMed] [Google Scholar]
  15. Kerr S. J., Armati P. J., Guillemin G. J., Brew B. J. Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS. 1998 Mar 5;12(4):355–363. doi: 10.1097/00002030-199804000-00003. [DOI] [PubMed] [Google Scholar]
  16. Koontz W. A., Shiman R. Beef kidney 3-hydroxyanthranilic acid oxygenase. Purification, characterization, and analysis of the assay. J Biol Chem. 1976 Jan 25;251(2):368–377. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Maezono K., Tashiro K., Nakamura T. Deduced primary structure of rat tryptophan-2,3-dioxygenase. Biochem Biophys Res Commun. 1990 Jul 16;170(1):176–181. doi: 10.1016/0006-291x(90)91256-r. [DOI] [PubMed] [Google Scholar]
  19. Malherbe P., Köhler C., Da Prada M., Lang G., Kiefer V., Schwarcz R., Lahm H. W., Cesura A. M. Molecular cloning and functional expression of human 3-hydroxyanthranilic-acid dioxygenase. J Biol Chem. 1994 May 13;269(19):13792–13797. [PubMed] [Google Scholar]
  20. Melillo G., Cox G. W., Biragyn A., Sheffler L. A., Varesio L. Regulation of nitric-oxide synthase mRNA expression by interferon-gamma and picolinic acid. J Biol Chem. 1994 Mar 18;269(11):8128–8133. [PubMed] [Google Scholar]
  21. Melillo G., Cox G. W., Radzioch D., Varesio L. Picolinic acid, a catabolite of L-tryptophan, is a costimulus for the induction of reactive nitrogen intermediate production in murine macrophages. J Immunol. 1993 May 1;150(9):4031–4040. [PubMed] [Google Scholar]
  22. Nakano K., Takahashi S., Mizobuchi M., Kuroda T., Masuda K., Kitoh J. High levels of quinolinic acid in brain of epilepsy-prone E1 mice. Brain Res. 1993 Aug 13;619(1-2):195–198. doi: 10.1016/0006-8993(93)91612-v. [DOI] [PubMed] [Google Scholar]
  23. Nishino H. A simple method for determination of intramolecular amino acid sequence of unpurified protein. Application to human serum protein adsorbed by silica particles. Biochem Int. 1991 Jul;24(5):899–906. [PubMed] [Google Scholar]
  24. Ogata S., Takeuchi M., Fujita H., Shibata K., Okumura K., Taguchi H. Apoptosis induced by niacin-related compounds in K562 cells but not in normal human lymphocytes. Biosci Biotechnol Biochem. 2000 Jun;64(6):1142–1146. doi: 10.1271/bbb.64.1142. [DOI] [PubMed] [Google Scholar]
  25. Ogata S., Takeuchi M., Okumura K., Taguchi H. Apoptosis induced by niacin-related compounds in HL-60 cells. Biosci Biotechnol Biochem. 1998 Dec;62(12):2351–2356. doi: 10.1271/bbb.62.2351. [DOI] [PubMed] [Google Scholar]
  26. Pais T. F., Appelberg R. Macrophage control of mycobacterial growth induced by picolinic acid is dependent on host cell apoptosis. J Immunol. 2000 Jan 1;164(1):389–397. doi: 10.4049/jimmunol.164.1.389. [DOI] [PubMed] [Google Scholar]
  27. Perkins M. N., Stone T. W. Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system. J Pharmacol Exp Ther. 1983 Aug;226(2):551–557. [PubMed] [Google Scholar]
  28. Pérez-Severiano F., Escalante B., Ríos C. Nitric oxide synthase inhibition prevents acute quinolinate-induced striatal neurotoxicity. Neurochem Res. 1998 Oct;23(10):1297–1302. doi: 10.1023/a:1020700401678. [DOI] [PubMed] [Google Scholar]
  29. Saito K., Crowley J. S., Markey S. P., Heyes M. P. A mechanism for increased quinolinic acid formation following acute systemic immune stimulation. J Biol Chem. 1993 Jul 25;268(21):15496–15503. [PubMed] [Google Scholar]
  30. Saito K., Fujigaki S., Heyes M. P., Shibata K., Takemura M., Fujii H., Wada H., Noma A., Seishima M. Mechanism of increases in L-kynurenine and quinolinic acid in renal insufficiency. Am J Physiol Renal Physiol. 2000 Sep;279(3):F565–F572. doi: 10.1152/ajprenal.2000.279.3.F565. [DOI] [PubMed] [Google Scholar]
  31. Sanada H., Miyazaki M. Effect of high-protein diet on liver alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in rats. J Nutr Sci Vitaminol (Tokyo) 1984 Apr;30(2):113–123. doi: 10.3177/jnsv.30.113. [DOI] [PubMed] [Google Scholar]
  32. Sanada H., Miyazaki M. Effect of pituitary hormones on alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in rat. J Nutr Sci Vitaminol (Tokyo) 1980;26(6):607–616. doi: 10.3177/jnsv.26.607. [DOI] [PubMed] [Google Scholar]
  33. Sanada H., Miyazaki M. Regulation of tryptophan-niacin metabolism by hormones. J Nutr Sci Vitaminol (Tokyo) 1980;26(6):617–627. doi: 10.3177/jnsv.26.617. [DOI] [PubMed] [Google Scholar]
  34. Sanada H., Miyazaki M., Takahashi T. Regulation of tryptophan-niacin metabolism in diabetic rats. J Nutr Sci Vitaminol (Tokyo) 1980;26(5):449–459. doi: 10.3177/jnsv.26.449. [DOI] [PubMed] [Google Scholar]
  35. Sanada H. Suppressive effect of dietary unsaturated fatty acids on alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme of tryptophan-niacin metabolism in rat liver. J Nutr Sci Vitaminol (Tokyo) 1985 Jun;31(3):327–337. doi: 10.3177/jnsv.31.327. [DOI] [PubMed] [Google Scholar]
  36. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  37. Schwarcz R., Whetsell W. O., Jr, Mangano R. M. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science. 1983 Jan 21;219(4582):316–318. doi: 10.1126/science.6849138. [DOI] [PubMed] [Google Scholar]
  38. Shibata K. Effects of adrenalin on the conversion ratio of tryptophan to niacin in rats. Biosci Biotechnol Biochem. 1995 Nov;59(11):2127–2129. doi: 10.1271/bbb.59.2127. [DOI] [PubMed] [Google Scholar]
  39. Shibata K., Toda S. Effects of sex hormones on the metabolism of tryptophan to niacin and to serotonin in male rats. Biosci Biotechnol Biochem. 1997 Jul;61(7):1200–1202. doi: 10.1271/bbb.61.1200. [DOI] [PubMed] [Google Scholar]
  40. Yamada K., Fuji K., Nabeshima T., Kameyama T. Neurotoxicity induced by continuous infusion of quinolinic acid into the lateral ventricle in rats. Neurosci Lett. 1990 Oct 2;118(1):128–131. doi: 10.1016/0304-3940(90)90265-b. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES