Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):577–585. doi: 10.1042/0264-6021:3610577

Modulation of the reactivity of the essential cysteine residue of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.

Lilian González-Segura 1, Roberto Velasco-García 1, Rosario A Muñoz-Clares 1
PMCID: PMC1222340  PMID: 11802787

Abstract

Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible NAD(P)(+)-dependent oxidation of betaine aldehyde to glycine betaine. In the human opportunistic pathogen Pseudomonas aeruginosa this reaction is an obligatory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. As with every aldehyde dehydrogenase studied so far, BADH possesses an essential cysteine residue involved in the formation of the intermediate thiohemiacetal with the aldehyde substrate. We report here that the chemical modification of this residue is conveniently measured by the loss in enzyme activity, which allowed us to explore its reactivity in a pH range around neutrality. The pH dependence of the observed second-order rate constant of BADH inactivation by methyl methanethiosulphonate (MMTS) suggests that at low pH values the essential cysteine residue exists as thiolate by the formation of an ion pair with a positively charged residue. The estimated macroscopic pK values are 8.6 and 4.0 for the free and ion-pair-forming thiolate respectively. The reactivity towards MMTS of both thiolate forms is notably lower than that of model compounds of similar pK, suggesting a considerable steric inhibition by the structure of the protein. Binding of the dinucleotides rapidly induced a significant and transitory increment of thiolate reactivity, followed by a relatively slow change to an almost unreactive form. Thus it seems that to gain protection against oxidation without compromising catalytic efficiency, BADH from P. aeruginosa has evolved a complex and previously undescribed mechanism, involving several conformational rearrangements of the active site, to suit the reactivity of the essential thiol to the availability of coenzyme and substrate.

Full Text

The Full Text of this article is available as a PDF (178.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abriola D. P., MacKerell A. D., Jr, Pietruszko R. Correlation of loss of activity of human aldehyde dehydrogenase with reaction of bromoacetophenone with glutamic acid-268 and cysteine-302 residues. Partial-sites reactivity of aldehyde dehydrogenase. Biochem J. 1990 Feb 15;266(1):179–187. doi: 10.1042/bj2660179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bednar R. A. Reactivity and pH dependence of thiol conjugation to N-ethylmaleimide: detection of a conformational change in chalcone isomerase. Biochemistry. 1990 Apr 17;29(15):3684–3690. doi: 10.1021/bi00467a014. [DOI] [PubMed] [Google Scholar]
  3. Blatter E. E., Abriola D. P., Pietruszko R. Aldehyde dehydrogenase. Covalent intermediate in aldehyde dehydrogenation and ester hydrolysis. Biochem J. 1992 Mar 1;282(Pt 2):353–360. doi: 10.1042/bj2820353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blatter E. E., Abriola D. P., Pietruszko R. Aldehyde dehydrogenase. Covalent intermediate in aldehyde dehydrogenation and ester hydrolysis. Biochem J. 1992 Mar 1;282(Pt 2):353–360. doi: 10.1042/bj2820353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blatter E. E., Tasayco M. L., Prestwich G., Pietruszko R. Chemical modification of aldehyde dehydrogenase by a vinyl ketone analogue of an insect pheromone. Biochem J. 1990 Dec 1;272(2):351–358. doi: 10.1042/bj2720351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  8. D'Souza-Ault M. R., Smith L. T., Smith G. M. Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol. 1993 Feb;59(2):473–478. doi: 10.1128/aem.59.2.473-478.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dickinson F. M. The purification and some properties of the Mg(2+)-activated cytosolic aldehyde dehydrogenase of Saccharomyces cerevisiae. Biochem J. 1996 Apr 15;315(Pt 2):393–399. doi: 10.1042/bj3150393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  11. Farrés J., Wang T. T., Cunningham S. J., Weiner H. Investigation of the active site cysteine residue of rat liver mitochondrial aldehyde dehydrogenase by site-directed mutagenesis. Biochemistry. 1995 Feb 28;34(8):2592–2598. doi: 10.1021/bi00008a025. [DOI] [PubMed] [Google Scholar]
  12. Hempel J., Nicholas H., Lindahl R. Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 1993 Nov;2(11):1890–1900. doi: 10.1002/pro.5560021111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hempel J., Pietruszko R., Fietzek P., Jörnvall H. Identification of a segment containing a reactive cysteine residue in human liver cytoplasmic aldehyde dehydrogenase (isoenzyme E1). Biochemistry. 1982 Dec 21;21(26):6834–6838. doi: 10.1021/bi00269a032. [DOI] [PubMed] [Google Scholar]
  14. Johansson K., El-Ahmad M., Ramaswamy S., Hjelmqvist L., Jörnvall H., Eklund H. Structure of betaine aldehyde dehydrogenase at 2.1 A resolution. Protein Sci. 1998 Oct;7(10):2106–2117. doi: 10.1002/pro.5560071007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kilbourn J. P. Bacterial content and ionic composition of sputum in cystic fibrosis. Lancet. 1978 Feb 11;1(8059):334–334. doi: 10.1016/s0140-6736(78)90111-3. [DOI] [PubMed] [Google Scholar]
  16. Kitson T. M. Further studies of the action of disulfiram and 2,2'-dithiodipyridine on the dehydrogenase and esterase activities of sheep liver cytoplasmic aldehyde dehydrogenase. Biochem J. 1982 Jun 1;203(3):743–754. doi: 10.1042/bj2030743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kitson T. M., Hill J. P., Midwinter G. G. Identification of a catalytically essential nucleophilic residue in sheep liver cytoplasmic aldehyde dehydrogenase. Biochem J. 1991 Apr 1;275(Pt 1):207–210. doi: 10.1042/bj2750207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kitson T. M. The inactivation of aldehyde dehydrogenase by disulfiram in the presence of glutathione. Biochem J. 1981 Oct 1;199(1):255–258. doi: 10.1042/bj1990255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LEVY H. M., LEBER P. D., RYAN E. M. INACTIVATION OF MYOSIN BY 2,4-DINITROPHENOL AND PROTECTION BY ADENOSINE TRIPHOSPHATE AND OTHER PHOSPHATE COMPOUNDS. J Biol Chem. 1963 Nov;238:3654–3659. [PubMed] [Google Scholar]
  20. Lipsky J. J., Shen M. L., Naylor S. Overview--in vitro inhibition of aldehyde dehydrogenase by disulfiram and metabolites. Chem Biol Interact. 2001 Jan 30;130-132(1-3):81–91. doi: 10.1016/s0009-2797(00)00224-6. [DOI] [PubMed] [Google Scholar]
  21. Lo Bello M., Parker M. W., Desideri A., Polticelli F., Falconi M., Del Boccio G., Pennelli A., Federici G., Ricci G. Peculiar spectroscopic and kinetic properties of Cys-47 in human placental glutathione transferase. Evidence for an atypical thiolate ion pair near the active site. J Biol Chem. 1993 Sep 5;268(25):19033–19038. [PubMed] [Google Scholar]
  22. MacKerell A. D., Jr, Vallari R. C., Pietruszko R. Human mitochondrial aldehyde dehydrogenase inhibition by diethyldithiocarbamic acid methanethiol mixed disulfide: a derivative of disulfiram. FEBS Lett. 1985 Jan 1;179(1):77–81. doi: 10.1016/0014-5793(85)80195-2. [DOI] [PubMed] [Google Scholar]
  23. Marchal S., Branlant G. Evidence for the chemical activation of essential cys-302 upon cofactor binding to nonphosphorylating glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans. Biochemistry. 1999 Sep 28;38(39):12950–12958. doi: 10.1021/bi990453k. [DOI] [PubMed] [Google Scholar]
  24. Nelson J. W., Creighton T. E. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry. 1994 May 17;33(19):5974–5983. doi: 10.1021/bi00185a039. [DOI] [PubMed] [Google Scholar]
  25. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  26. Perozich J., Nicholas H., Wang B. C., Lindahl R., Hempel J. Relationships within the aldehyde dehydrogenase extended family. Protein Sci. 1999 Jan;8(1):137–146. doi: 10.1110/ps.8.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pesin S. R., Candia O. A. Acetylcholine concentration and its role in ionic transport by the corneal epithelium. Invest Ophthalmol Vis Sci. 1982 May;22(5):651–659. [PubMed] [Google Scholar]
  28. Rennick B. R. Renal tubule transport of organic cations. Am J Physiol. 1981 Feb;240(2):F83–F89. doi: 10.1152/ajprenal.1981.240.2.F83. [DOI] [PubMed] [Google Scholar]
  29. Roberts D. D., Lewis S. D., Ballou D. P., Olson S. T., Shafer J. A. Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. Biochemistry. 1986 Sep 23;25(19):5595–5601. doi: 10.1021/bi00367a038. [DOI] [PubMed] [Google Scholar]
  30. Smith D. J., Maggio E. T., Kenyon G. L. Simple alkanethiol groups for temporary blocking of sulfhydryl groups of enzymes. Biochemistry. 1975 Feb 25;14(4):766–771. doi: 10.1021/bi00675a019. [DOI] [PubMed] [Google Scholar]
  31. Soukri A., Mougin A., Corbier C., Wonacott A., Branlant C., Branlant G. Role of the histidine 176 residue in glyceraldehyde-3-phosphate dehydrogenase as probed by site-directed mutagenesis. Biochemistry. 1989 Mar 21;28(6):2586–2592. doi: 10.1021/bi00432a036. [DOI] [PubMed] [Google Scholar]
  32. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J., Lagrou M. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000 Aug 31;406(6799):959–964. doi: 10.1038/35023079. [DOI] [PubMed] [Google Scholar]
  33. Talfournier F., Colloc'h N., Mornon J. P., Branlant G. Comparative study of the catalytic domain of phosphorylating glyceraldehyde-3-phosphate dehydrogenases from bacteria and archaea via essential cysteine probes and site-directed mutagenesis. Eur J Biochem. 1998 Mar 15;252(3):447–457. doi: 10.1046/j.1432-1327.1998.2520447.x. [DOI] [PubMed] [Google Scholar]
  34. Talfournier F., Colloc'h N., Mornon J. P., Branlant G. Functional characterization of the phosphorylating D-glyceraldehyde 3-phosphate dehydrogenase from the archaeon Methanothermus fervidus by comparative molecular modelling and site-directed mutagenesis. Eur J Biochem. 1999 Oct 1;265(1):93–104. doi: 10.1046/j.1432-1327.1999.00681.x. [DOI] [PubMed] [Google Scholar]
  35. Vallari R. C., Pietruszko R. Human aldehyde dehydrogenase: mechanism of inhibition of disulfiram. Science. 1982 May 7;216(4546):637–639. doi: 10.1126/science.7071604. [DOI] [PubMed] [Google Scholar]
  36. Velasco-García R., González-Segura L., Muñoz-Clares R. A. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. Biochem J. 2000 Dec 15;352(Pt 3):675–683. [PMC free article] [PubMed] [Google Scholar]
  37. Velasco-García R., Mújica-Jiménez C., Mendoza-Hernández G., Muñoz-Clares R. A. Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. J Bacteriol. 1999 Feb;181(4):1292–1300. doi: 10.1128/jb.181.4.1292-1300.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wright J. R., Clements J. A. Metabolism and turnover of lung surfactant. Am Rev Respir Dis. 1987 Aug;136(2):426–444. doi: 10.1164/ajrccm/136.2.426. [DOI] [PubMed] [Google Scholar]
  39. von Bahr-Lindström H., Jeck R., Woenckhaus C., Sohn S., Hempel J., Jörnvall H. Characterization of the coenzyme binding site of liver aldehyde dehydrogenase: differential reactivity of coenzyme analogues. Biochemistry. 1985 Oct 8;24(21):5847–5851. doi: 10.1021/bi00342a023. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES