Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):587–595. doi: 10.1042/0264-6021:3610587

The human homologue of the yeast polyubiquitination factor Ufd2p is cleaved by caspase 6 and granzyme B during apoptosis.

James A Mahoney 1, Joseph A Odin 1, Sarah M White 1, David Shaffer 1, Andrew Koff 1, Livia Casciola-Rosen 1, Antony Rosen 1
PMCID: PMC1222341  PMID: 11802788

Abstract

In the present study, we demonstrate that a human homologue of Ufd2p (a yeast protein that catalyses the formation of long polyubiquitin chains, and is implicated in responses to environmental stress), UFD2 (ubiquitin fusion degradation protein-2), is cleaved during apoptosis induced by multiple stimuli, including UVB irradiation, Fas ligation, staurosporine treatment and cytotoxic lymphocyte granule-induced death. Caspase 6 and granzyme B efficiently cleave UFD2 [k(cat)/K(m)=(4-5) x 10(4) M(-1) x s(-1)] at Asp(123), whereas caspases 3 and 7 cleave UFD2 approx. 10-fold less efficiently immediately upstream at Asp(109). Thus UFD2 is added to the growing list of proteins with closely spaced caspase and granzyme B cleavage sites, suggesting the presence of a previously unrecognized, conserved motif. Both cleavage sites are contained and conserved within a novel 300-amino-acid N-terminal domain present in apparent UFD2 orthologues in mice and zebrafish, but absent in all UFD2 family members in lower eukaryotes. Full-length recombinant UFD2 exhibited ubiquitin-protein ligase ('E3')-like ubiquitination activity in vitro, but this activity was abolished in recombinant UFD2 truncated at the granzyme B/caspase 6 cleavage site. Cleavage of UFD2 by caspases or granzyme B within this putative regulatory N-terminal domain might have important functional consequences within the apoptotic cascade.

Full Text

The Full Text of this article is available as a PDF (621.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alimonti J. B., Shi L., Baijal P. K., Greenberg A. H. Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition. J Biol Chem. 2000 Dec 12;276(10):6974–6982. doi: 10.1074/jbc.M008444200. [DOI] [PubMed] [Google Scholar]
  2. Andrade F., Roy S., Nicholson D., Thornberry N., Rosen A., Casciola-Rosen L. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity. 1998 Apr;8(4):451–460. doi: 10.1016/s1074-7613(00)80550-6. [DOI] [PubMed] [Google Scholar]
  3. Aravind L., Koonin E. V. The U box is a modified RING finger - a common domain in ubiquitination. Curr Biol. 2000 Feb 24;10(4):R132–R134. doi: 10.1016/s0960-9822(00)00398-5. [DOI] [PubMed] [Google Scholar]
  4. Casciola-Rosen L. A., Anhalt G. J., Rosen A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med. 1995 Dec 1;182(6):1625–1634. doi: 10.1084/jem.182.6.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casciola-Rosen L. A., Anhalt G., Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994 Apr 1;179(4):1317–1330. doi: 10.1084/jem.179.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casciola-Rosen L., Andrade F., Ulanet D., Wong W. B., Rosen A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med. 1999 Sep 20;190(6):815–826. doi: 10.1084/jem.190.6.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Darmon A. J., Nicholson D. W., Bleackley R. C. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature. 1995 Oct 5;377(6548):446–448. doi: 10.1038/377446a0. [DOI] [PubMed] [Google Scholar]
  8. Evan G., Littlewood T. A matter of life and cell death. Science. 1998 Aug 28;281(5381):1317–1322. doi: 10.1126/science.281.5381.1317. [DOI] [PubMed] [Google Scholar]
  9. Greidinger E. L., Miller D. K., Yamin T. T., Casciola-Rosen L., Rosen A. Sequential activation of three distinct ICE-like activities in Fas-ligated Jurkat cells. FEBS Lett. 1996 Jul 29;390(3):299–303. doi: 10.1016/0014-5793(96)00678-3. [DOI] [PubMed] [Google Scholar]
  10. Harris J. L., Peterson E. P., Hudig D., Thornberry N. A., Craik C. S. Definition and redesign of the extended substrate specificity of granzyme B. J Biol Chem. 1998 Oct 16;273(42):27364–27373. doi: 10.1074/jbc.273.42.27364. [DOI] [PubMed] [Google Scholar]
  11. Hatakeyama S., Yada M., Matsumoto M., Ishida N., Nakayama K. I. U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem. 2001 Jul 2;276(35):33111–33120. doi: 10.1074/jbc.M102755200. [DOI] [PubMed] [Google Scholar]
  12. Heibein J. A., Goping I. S., Barry M., Pinkoski M. J., Shore G. C., Green D. R., Bleackley R. C. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax. J Exp Med. 2000 Nov 20;192(10):1391–1402. doi: 10.1084/jem.192.10.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobson M. D., Weil M., Raff M. C. Programmed cell death in animal development. Cell. 1997 Feb 7;88(3):347–354. doi: 10.1016/s0092-8674(00)81873-5. [DOI] [PubMed] [Google Scholar]
  14. Johnson E. S., Ma P. C., Ota I. M., Varshavsky A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem. 1995 Jul 21;270(29):17442–17456. doi: 10.1074/jbc.270.29.17442. [DOI] [PubMed] [Google Scholar]
  15. Koegl M., Hoppe T., Schlenker S., Ulrich H. D., Mayer T. U., Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell. 1999 Mar 5;96(5):635–644. doi: 10.1016/s0092-8674(00)80574-7. [DOI] [PubMed] [Google Scholar]
  16. Li H., Zhu H., Xu C. J., Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998 Aug 21;94(4):491–501. doi: 10.1016/s0092-8674(00)81590-1. [DOI] [PubMed] [Google Scholar]
  17. MacDonald G., Shi L., Vande Velde C., Lieberman J., Greenberg A. H. Mitochondria-dependent and -independent regulation of Granzyme B-induced apoptosis. J Exp Med. 1999 Jan 4;189(1):131–144. doi: 10.1084/jem.189.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Motyka B., Korbutt G., Pinkoski M. J., Heibein J. A., Caputo A., Hobman M., Barry M., Shostak I., Sawchuk T., Holmes C. F. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell. 2000 Oct 27;103(3):491–500. doi: 10.1016/s0092-8674(00)00140-9. [DOI] [PubMed] [Google Scholar]
  19. Nicholson D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999 Nov;6(11):1028–1042. doi: 10.1038/sj.cdd.4400598. [DOI] [PubMed] [Google Scholar]
  20. Peitsch M. C., Tschopp J. Granzyme B. Methods Enzymol. 1994;244:80–87. doi: 10.1016/0076-6879(94)44007-7. [DOI] [PubMed] [Google Scholar]
  21. Pukatzki S., Tordilla N., Franke J., Kessin R. H. A novel component involved in ubiquitination is required for development of Dictyostelium discoideum. J Biol Chem. 1998 Sep 11;273(37):24131–24138. doi: 10.1074/jbc.273.37.24131. [DOI] [PubMed] [Google Scholar]
  22. Sanghavi D. M., Thelen M., Thornberry N. A., Casciola-Rosen L., Rosen A. Caspase-mediated proteolysis during apoptosis: insights from apoptotic neutrophils. FEBS Lett. 1998 Jan 30;422(2):179–184. doi: 10.1016/s0014-5793(98)00004-0. [DOI] [PubMed] [Google Scholar]
  23. Stennicke H. R., Jürgensmeier J. M., Shin H., Deveraux Q., Wolf B. B., Yang X., Zhou Q., Ellerby H. M., Ellerby L. M., Bredesen D. Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem. 1998 Oct 16;273(42):27084–27090. doi: 10.1074/jbc.273.42.27084. [DOI] [PubMed] [Google Scholar]
  24. Stennicke H. R., Salvesen G. S. Caspases: preparation and characterization. Methods. 1999 Apr;17(4):313–319. doi: 10.1006/meth.1999.0745. [DOI] [PubMed] [Google Scholar]
  25. Sutton V. R., Davis J. E., Cancilla M., Johnstone R. W., Ruefli A. A., Sedelies K., Browne K. A., Trapani J. A. Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J Exp Med. 2000 Nov 20;192(10):1403–1414. doi: 10.1084/jem.192.10.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Talanian R. V., Quinlan C., Trautz S., Hackett M. C., Mankovich J. A., Banach D., Ghayur T., Brady K. D., Wong W. W. Substrate specificities of caspase family proteases. J Biol Chem. 1997 Apr 11;272(15):9677–9682. doi: 10.1074/jbc.272.15.9677. [DOI] [PubMed] [Google Scholar]
  27. Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
  28. Vaux D. L., Flavell R. A. Apoptosis genes and autoimmunity. Curr Opin Immunol. 2000 Dec;12(6):719–724. doi: 10.1016/s0952-7915(00)00168-0. [DOI] [PubMed] [Google Scholar]
  29. Wolf B. B., Schuler M., Echeverri F., Green D. R. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem. 1999 Oct 22;274(43):30651–30656. doi: 10.1074/jbc.274.43.30651. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES