Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):597–604. doi: 10.1042/0264-6021:3610597

Phosphorylation of a novel zinc-finger-like protein, ZPR9, by murine protein serine/threonine kinase 38 (MPK38).

Hyun-A Seong 1, Minchan Gil 1, Kyong-Tai Kim 1, Sung-Jin Kim 1, Hyunjung Ha 1
PMCID: PMC1222342  PMID: 11802789

Abstract

We have identified previously a new murine protein serine/threonine kinase, MPK38, closely related to the sucrose-non-fermenting protein kinase family [Gil, Yang, Lee, Choi and Ha (1997) Gene 195, 295-301]. Using the C-terminal half of the putative human counterpart of MPK38, HPK38, as a bait in a yeast two-hybrid screen of a human HeLa cDNA library, it was discovered that the zinc-finger-motif-containing protein, termed zinc-finger-like protein 9 (ZPR9), bound both HPK38 and MPK38. In a co-expression assay, ZPR9 associated with MPK38 in vivo, and we showed that the ZPR9 is also phosphorylated by MPK38. In addition, ZPR9 physically interacts with itself in mammalian cells. The ZPR9 cDNA hybridized with a mRNA species of approx. 1.7 kb in Northern-blot analysis. The ZPR9 transcript was detected in all tissues examined, including lung, kidney, spleen,liver and brain. Co-expression of ZPR9 with MPK38 caused the accumulation of ZPR9 in the nucleus. These findings suggest a potentially important role for ZPR9 in MPK38-mediated signal transduction, and that ZPR9 is a physiological substrate of MPK38 in vivo.

Full Text

The Full Text of this article is available as a PDF (273.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson R. A., Saudek V., Huggins J. P., Pelton J. T. 1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependent protein kinase: a leucine/isoleucine zipper. Biochemistry. 1991 Oct 1;30(39):9387–9395. doi: 10.1021/bi00103a001. [DOI] [PubMed] [Google Scholar]
  2. Cheng G., Cleary A. M., Ye Z. S., Hong D. I., Lederman S., Baltimore D. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science. 1995 Mar 10;267(5203):1494–1498. doi: 10.1126/science.7533327. [DOI] [PubMed] [Google Scholar]
  3. Darnell J. E., Jr, Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994 Jun 3;264(5164):1415–1421. doi: 10.1126/science.8197455. [DOI] [PubMed] [Google Scholar]
  4. Diakun G. P., Fairall L., Klug A. EXAFS study of the zinc-binding sites in the protein transcription factor IIIA. Nature. 1986 Dec 18;324(6098):698–699. doi: 10.1038/324698a0. [DOI] [PubMed] [Google Scholar]
  5. Forman B. M., Yang C. R., Au M., Casanova J., Ghysdael J., Samuels H. H. A domain containing leucine-zipper-like motifs mediate novel in vivo interactions between the thyroid hormone and retinoic acid receptors. Mol Endocrinol. 1989 Oct;3(10):1610–1626. doi: 10.1210/mend-3-10-1610. [DOI] [PubMed] [Google Scholar]
  6. Freemont P. S. The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci. 1993 Jun 11;684:174–192. doi: 10.1111/j.1749-6632.1993.tb32280.x. [DOI] [PubMed] [Google Scholar]
  7. Galcheva-Gargova Z., Konstantinov K. N., Wu I. H., Klier F. G., Barrett T., Davis R. J. Binding of zinc finger protein ZPR1 to the epidermal growth factor receptor. Science. 1996 Jun 21;272(5269):1797–1802. doi: 10.1126/science.272.5269.1797. [DOI] [PubMed] [Google Scholar]
  8. Gessler M., Poustka A., Cavenee W., Neve R. L., Orkin S. H., Bruns G. A. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature. 1990 Feb 22;343(6260):774–778. doi: 10.1038/343774a0. [DOI] [PubMed] [Google Scholar]
  9. Gil M., Yang Y., Ha H. MPK38 expression is upregulated in immature T cells activated by concanavalin A. Immunol Lett. 1998 Dec;64(2-3):79–83. doi: 10.1016/s0165-2478(98)00081-9. [DOI] [PubMed] [Google Scholar]
  10. Gil M., Yang Y., Lee Y., Choi I., Ha H. Cloning and expression of a cDNA encoding a novel protein serine/threonine kinase predominantly expressed in hematopoietic cells. Gene. 1997 Aug 22;195(2):295–301. doi: 10.1016/s0378-1119(97)00181-9. [DOI] [PubMed] [Google Scholar]
  11. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  12. Heyer B. S., Kochanowski H., Solter D. Expression of Melk, a new protein kinase, during early mouse development. Dev Dyn. 1999 Aug;215(4):344–351. doi: 10.1002/(SICI)1097-0177(199908)215:4<344::AID-AJA6>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  13. Heyer B. S., Warsowe J., Solter D., Knowles B. B., Ackerman S. L. New member of the Snf1/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo. Mol Reprod Dev. 1997 Jun;47(2):148–156. doi: 10.1002/(SICI)1098-2795(199706)47:2<148::AID-MRD4>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  14. Hill C. S., Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 1995 Jan 27;80(2):199–211. doi: 10.1016/0092-8674(95)90403-4. [DOI] [PubMed] [Google Scholar]
  15. Hu H. M., O'Rourke K., Boguski M. S., Dixit V. M. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J Biol Chem. 1994 Dec 2;269(48):30069–30072. [PubMed] [Google Scholar]
  16. Hunter T., Karin M. The regulation of transcription by phosphorylation. Cell. 1992 Aug 7;70(3):375–387. doi: 10.1016/0092-8674(92)90162-6. [DOI] [PubMed] [Google Scholar]
  17. Ihle J. N., Kerr I. M. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 1995 Feb;11(2):69–74. doi: 10.1016/s0168-9525(00)89000-9. [DOI] [PubMed] [Google Scholar]
  18. Inagaki H., Matsushima Y., Nakamura K., Ohshima M., Kadowaki T., Kitagawa Y. A large DNA-binding nuclear protein with RNA recognition motif and serine/arginine-rich domain. J Biol Chem. 1996 May 24;271(21):12525–12531. doi: 10.1074/jbc.271.21.12525. [DOI] [PubMed] [Google Scholar]
  19. Inoue A., Ishiji A., Kasagi S., Ishizuka M., Hirose S., Baba T., Hagiwara H. The transcript for a novel protein with a zinc finger motif is expressed at specific stages of mouse spermatogenesis. Biochem Biophys Res Commun. 2000 Jul 5;273(2):398–403. doi: 10.1006/bbrc.2000.2953. [DOI] [PubMed] [Google Scholar]
  20. Ishida T. K., Tojo T., Aoki T., Kobayashi N., Ohishi T., Watanabe T., Yamamoto T., Inoue J. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9437–9442. doi: 10.1073/pnas.93.18.9437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jung H., Kim T., Chae H. Z., Kim K. T., Ha H. Regulation of macrophage migration inhibitory factor and thiol-specific antioxidant protein PAG by direct interaction. J Biol Chem. 2001 Jan 31;276(18):15504–15510. doi: 10.1074/jbc.M009620200. [DOI] [PubMed] [Google Scholar]
  22. Kim T., Jung H., Min S., Kim K. T., Ha H. B-myb proto-oncogene products interact in vivo with each other via the carboxy-terminal conserved region. FEBS Lett. 1999 Oct 29;460(2):363–368. doi: 10.1016/s0014-5793(99)01375-7. [DOI] [PubMed] [Google Scholar]
  23. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  24. Massagué J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–791. doi: 10.1146/annurev.biochem.67.1.753. [DOI] [PubMed] [Google Scholar]
  25. Mosialos G., Birkenbach M., Yalamanchili R., VanArsdale T., Ware C., Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995 Feb 10;80(3):389–399. doi: 10.1016/0092-8674(95)90489-1. [DOI] [PubMed] [Google Scholar]
  26. Nagase T., Seki N., Ishikawa K., Tanaka A., Nomura N. Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 1996 Feb 29;3(1):17–24. doi: 10.1093/dnares/3.1.17. [DOI] [PubMed] [Google Scholar]
  27. Rothe M., Wong S. C., Henzel W. J., Goeddel D. V. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell. 1994 Aug 26;78(4):681–692. doi: 10.1016/0092-8674(94)90532-0. [DOI] [PubMed] [Google Scholar]
  28. Tillotson L. G. RIN ZF, a novel zinc finger gene, encodes proteins that bind to the CACC element of the gastrin promoter. J Biol Chem. 1999 Mar 19;274(12):8123–8128. doi: 10.1074/jbc.274.12.8123. [DOI] [PubMed] [Google Scholar]
  29. Wu R. Y., Gill G. N. LIM domain recognition of a tyrosine-containing tight turn. J Biol Chem. 1994 Oct 7;269(40):25085–25090. [PubMed] [Google Scholar]
  30. Yang Y., Gil M. C., Choi E. Y., Park S. H., Pyun K. H., Ha H. Molecular cloning and chromosomal localization of a human gene homologous to the murine R-PTP-kappa, a receptor-type protein tyrosine phosphatase. Gene. 1997 Feb 20;186(1):77–82. doi: 10.1016/s0378-1119(96)00684-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES