Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):605–611. doi: 10.1042/0264-6021:3610605

A novel Ca2+-induced Ca2+ release mechanism mediated by neither inositol trisphosphate nor ryanodine receptors.

Frank Wissing 1, Edmund P Nerou 1, Colin W Taylor 1
PMCID: PMC1222343  PMID: 11802790

Abstract

Members of both major families of intracellular Ca(2+) channels, ryanodine and inositol 1,4,5-trisphosphate (IP3) receptors, are stimulated by substantial increases in cytosolic free Ca(2+) concentration ([Ca(2+)]c). They thereby mediate Ca(2+)-induced Ca(2+) release (CICR), which allows amplification and regenerative propagation of intracellular Ca(2+) signals. In permeabilized hepatocytes, increasing [Ca(2+)]c to 10 microM stimulated release of 30+/-1% of the intracellular stores within 60 s; the EC(50) occurred with a free [Ca(2+)] of 170+/-29 nM. This CICR was abolished at 2 degrees C. The same fraction of the stores was released by CICR before and after depletion of the IP3-sensitive stores, and CICR was not blocked by antagonists of IP3 receptors. Ryanodine, Ruthenium Red and tetracaine affected neither the Ca(2+) content of the stores nor the CICR response. Sr(2+) and Ba(2+) (EC(50)=166 nM and 28 microM respectively) mimicked the effects of increased [Ca(2+)] on the intracellular stores, but Ni(2+) blocked the passive leak of Ca(2+) without blocking CICR. In rapid superfusion experiments, maximal concentrations of IP3 or Ca(2+) stimulated Ca(2+) release within 80 ms. The response to IP3 was complete within 2 s, but CICR continued for tens of seconds despite a slow [half-time (t(1/2))=3.54+/-0.07 s] partial inactivation. CICR reversed rapidly (t(1/2)=529+/-17 ms) and completely when the [Ca(2+)] was reduced. We conclude that hepatocytes express a novel temperature-sensitive, ATP-independent CICR mechanism that is reversibly activated by modest increases in [Ca(2+)], and does not require IP3 or ryanodine receptors or reversal of the sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase. This mechanism may both regulate the Ca(2+) content of the intracellular stores of unstimulated cells and allow even small intracellular Ca(2+) signals to be amplified by CICR.

Full Text

The Full Text of this article is available as a PDF (172.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht M. A., Colegrove S. L., Hongpaisan J., Pivovarova N. B., Andrews S. B., Friel D. D. Multiple modes of calcium-induced calcium release in sympathetic neurons I: attenuation of endoplasmic reticulum Ca2+ accumulation at low [Ca2+](i) during weak depolarization. J Gen Physiol. 2001 Jul;118(1):83–100. doi: 10.1085/jgp.118.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ascher-Landsberg J., Saunders T., Elovitz M., Phillippe M. The effects of 2-aminoethoxydiphenyl borate, a novel inositol 1,4, 5-trisphosphate receptor modulator on myometrial contractions. Biochem Biophys Res Commun. 1999 Nov 2;264(3):979–982. doi: 10.1006/bbrc.1999.1602. [DOI] [PubMed] [Google Scholar]
  3. Bak J., White P., Timár G., Missiaen L., Genazzani A. A., Galione A. Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes. Curr Biol. 1999 Jul 15;9(14):751–754. doi: 10.1016/s0960-9822(99)80335-2. [DOI] [PubMed] [Google Scholar]
  4. Bazotte R. B., Pereira B., Higham S., Shoshan-Barmatz V., Kraus-Friedmann N. Effects of ryanodine on calcium sequestration in the rat liver. Biochem Pharmacol. 1991 Oct 9;42(9):1799–1803. doi: 10.1016/0006-2952(91)90518-a. [DOI] [PubMed] [Google Scholar]
  5. Beecroft M. D., Taylor C. W. Luminal Ca2+ regulates passive Ca2+ efflux from the intracellular stores of hepatocytes. Biochem J. 1998 Sep 1;334(Pt 2):431–435. doi: 10.1042/bj3340431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berridge M. J., Lipp P., Bootman M. D. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000 Oct;1(1):11–21. doi: 10.1038/35036035. [DOI] [PubMed] [Google Scholar]
  7. Chen S. R., Li X., Ebisawa K., Zhang L. Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem. 1997 Sep 26;272(39):24234–24246. doi: 10.1074/jbc.272.39.24234. [DOI] [PubMed] [Google Scholar]
  8. Du G. G., Ashley C. C., Lea T. J. Ca2+ effluxes from the sarcoplasmic reticulum vesicles of frog muscle: effects of cyclopiazonic acid and thapsigargin. Cell Calcium. 1996 Oct;20(4):355–359. doi: 10.1016/s0143-4160(96)90041-x. [DOI] [PubMed] [Google Scholar]
  9. Ehrlich B. E., Kaftan E., Bezprozvannaya S., Bezprozvanny I. The pharmacology of intracellular Ca(2+)-release channels. Trends Pharmacol Sci. 1994 May;15(5):145–149. doi: 10.1016/0165-6147(94)90074-4. [DOI] [PubMed] [Google Scholar]
  10. Gafni J., Munsch J. A., Lam T. H., Catlin M. C., Costa L. G., Molinski T. F., Pessah I. N. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron. 1997 Sep;19(3):723–733. doi: 10.1016/s0896-6273(00)80384-0. [DOI] [PubMed] [Google Scholar]
  11. Galione A., McDougall A., Busa W. B., Willmott N., Gillot I., Whitaker M. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):348–352. doi: 10.1126/science.8392748. [DOI] [PubMed] [Google Scholar]
  12. Genazzani A. A., Galione A. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J. 1996 May 1;315(Pt 3):721–725. doi: 10.1042/bj3150721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giannini G., Conti A., Mammarella S., Scrobogna M., Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995 Mar;128(5):893–904. doi: 10.1083/jcb.128.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Khoo K. M., Han M. K., Park J. B., Chae S. W., Kim U. H., Lee H. C., Bay B. H., Chang C. F. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J Biol Chem. 2000 Aug 11;275(32):24807–24817. doi: 10.1074/jbc.M908231199. [DOI] [PubMed] [Google Scholar]
  15. Lee H. C. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem. 1993 Jan 5;268(1):293–299. [PubMed] [Google Scholar]
  16. Lemmens R., Larsson O., Berggren P. O., Islam M. S. Ca2+-induced Ca2+ release from the endoplasmic reticulum amplifies the Ca2+ signal mediated by activation of voltage-gated L-type Ca2+ channels in pancreatic beta-cells. J Biol Chem. 2001 Jan 3;276(13):9971–9977. doi: 10.1074/jbc.M009463200. [DOI] [PubMed] [Google Scholar]
  17. Lilly L. B., Gollan J. L. Ryanodine-induced calcium release from hepatic microsomes and permeabilized hepatocytes. Am J Physiol. 1995 Jun;268(6 Pt 1):G1017–G1024. doi: 10.1152/ajpgi.1995.268.6.G1017. [DOI] [PubMed] [Google Scholar]
  18. Ma H. T., Patterson R. L., van Rossum D. B., Birnbaumer L., Mikoshiba K., Gill D. L. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science. 2000 Mar 3;287(5458):1647–1651. doi: 10.1126/science.287.5458.1647. [DOI] [PubMed] [Google Scholar]
  19. Marchant J. S., Parker I. Role of elementary Ca(2+) puffs in generating repetitive Ca(2+) oscillations. EMBO J. 2001 Jan 15;20(1-2):65–76. doi: 10.1093/emboj/20.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marchant J. S., Taylor C. W. Cooperative activation of IP3 receptors by sequential binding of IP3 and Ca2+ safeguards against spontaneous activity. Curr Biol. 1997 Jul 1;7(7):510–518. doi: 10.1016/s0960-9822(06)00222-3. [DOI] [PubMed] [Google Scholar]
  21. Marshall I. C., Taylor C. W. Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. Biochem J. 1994 Jul 15;301(Pt 2):591–598. doi: 10.1042/bj3010591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maruyama T., Kanaji T., Nakade S., Kanno T., Mikoshiba K. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem. 1997 Sep;122(3):498–505. doi: 10.1093/oxfordjournals.jbchem.a021780. [DOI] [PubMed] [Google Scholar]
  23. McNulty T. J., Taylor C. W. Caffeine-stimulated Ca2+ release from the intracellular stores of hepatocytes is not mediated by ryanodine receptors. Biochem J. 1993 May 1;291(Pt 3):799–801. doi: 10.1042/bj2910799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Missiaen L., Callewaert G., De Smedt H., Parys J. B. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium. 2001 Feb;29(2):111–116. doi: 10.1054/ceca.2000.0163. [DOI] [PubMed] [Google Scholar]
  25. Nakamura T., Barbara J. G., Nakamura K., Ross W. N. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron. 1999 Nov;24(3):727–737. doi: 10.1016/s0896-6273(00)81125-3. [DOI] [PubMed] [Google Scholar]
  26. Nishiyama M., Hong K., Mikoshiba K., Poo M. M., Kato K. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature. 2000 Nov 30;408(6812):584–588. doi: 10.1038/35046067. [DOI] [PubMed] [Google Scholar]
  27. Oldershaw K. A., Nunn D. L., Taylor C. W. Quantal Ca2+ mobilization stimulated by inositol 1,4,5-trisphosphate in permeabilized hepatocytes. Biochem J. 1991 Sep 15;278(Pt 3):705–708. doi: 10.1042/bj2780705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Palade P., Dettbarn C., Alderson B., Volpe P. Pharmacologic differentiation between inositol-1,4,5-trisphosphate-induced Ca2+ release and Ca2+- or caffeine-induced Ca2+ release from intracellular membrane systems. Mol Pharmacol. 1989 Oct;36(4):673–680. [PubMed] [Google Scholar]
  29. Pyne S., Pyne N. J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J. 2000 Jul 15;349(Pt 2):385–402. doi: 10.1042/0264-6021:3490385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sharma G., Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A. 2001 Mar 20;98(7):4148–4153. doi: 10.1073/pnas.071540198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shoshan-Barmatz V., Zhang G. H., Garretson L., Kraus-Friedmann N. Distinct ryanodine- and inositol 1,4,5-trisphosphate-binding sites in hepatic microsomes. Biochem J. 1990 Jun 15;268(3):699–705. doi: 10.1042/bj2680699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sitsapesan R., Montgomery R. A., MacLeod K. T., Williams A. J. Sheep cardiac sarcoplasmic reticulum calcium-release channels: modification of conductance and gating by temperature. J Physiol. 1991 Mar;434:469–488. doi: 10.1113/jphysiol.1991.sp018481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sonnleitner A., Conti A., Bertocchini F., Schindler H., Sorrentino V. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 1998 May 15;17(10):2790–2798. doi: 10.1093/emboj/17.10.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Swatton J. E., Morris S. A., Cardy T. J., Taylor C. W. Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization. Biochem J. 1999 Nov 15;344(Pt 1):55–60. [PMC free article] [PubMed] [Google Scholar]
  35. Taylor C. W., Richardson A. Structure and function of inositol trisphosphate receptors. Pharmacol Ther. 1991;51(1):97–137. doi: 10.1016/0163-7258(91)90043-l. [DOI] [PubMed] [Google Scholar]
  36. Wang S. Q., Song L. S., Lakatta E. G., Cheng H. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature. 2001 Mar 29;410(6828):592–596. doi: 10.1038/35069083. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES