Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):641–651. doi: 10.1042/0264-6021:3610641

Human Hand1 basic helix-loop-helix (bHLH) protein: extra-embryonic expression pattern, interaction partners and identification of its transcriptional repressor domains.

Martin Knöfler 1, Gudrun Meinhardt 1, Sandra Bauer 1, Thomas Loregger 1, Richard Vasicek 1, Debra J Bloor 1, Susan J Kimber 1, Peter Husslein 1
PMCID: PMC1222348  PMID: 11802795

Abstract

The basic helix-loop-helix (bHLH) transcription factor, Hand1, plays an important role in the development of the murine extra-embryonic trophoblast cell lineage. In the present study, we have analysed the expression of Hand1 in human extra-embryonic cell types and determined its binding specificity and transcriptional activity upon interaction with different class A bHLH factors. Northern blotting and in situ hybridization showed that Hand1 mRNA is specifically expressed in amnion cells at different stages of gestation. Accordingly, we demonstrate that the protein is exclusively produced in the amniotic epithelium in vivo and in purified amnion cells in vitro using a novel polyclonal Hand1 antiserum. Reverse transcriptase-PCR and immunohistochemical staining of blastocysts revealed the production of Hand1 mRNA and polypeptide in the trophectodermal cell layer. In the presence of E12/E47, Hand1 stimulated the transcription of luciferase reporters harbouring degenerate E-boxes, suggesting that E-proteins are potential dimerization partners in trophoblastic tumour and amnion cells. In contrast, Hand1 diminished E12/E47-dependent transcription of reporters containing perfect E-boxes by inhibiting the interaction of Hand1/E-protein heterodimers with the palindromic cognate sequence. Furthermore, we show that Hand1 down-regulated GAL-E12-dependent reporter expression, indicating that the protein can also act directly as a transcriptional repressor. Mutational analyses of GAL-Hand1 suggested that two protein regions located within its N-terminal portion mainly confer the repressing activity. In conclusion, human Hand1 may play an important role in the differentiation of the amniotic membrane and the pre-implanting trophoblast. Furthermore, the data suggest that Hand1 can act as a repressor by two independent mechanisms; sequestration of class A bHLH factors from E-boxes and inhibition of their transcriptional activity.

Full Text

The Full Text of this article is available as a PDF (452.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alders M., Hodges M., Hadjantonakis A. K., Postmus J., van Wijk I., Bliek J., de Meulemeester M., Westerveld A., Guillemot F., Oudejans C. The human Achaete-Scute homologue 2 (ASCL2,HASH2) maps to chromosome 11p15.5, close to IGF2 and is expressed in extravillus trophoblasts. Hum Mol Genet. 1997 Jun;6(6):859–867. doi: 10.1093/hmg/6.6.859. [DOI] [PubMed] [Google Scholar]
  2. Aplin J. D., Campbell S., Foden L. J. Adhesion of human amnion epithelial cells to extracellular matrix. Evidence for multiple mechanisms. Exp Cell Res. 1984 Aug;153(2):425–438. doi: 10.1016/0014-4827(84)90611-6. [DOI] [PubMed] [Google Scholar]
  3. Baer R. TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Semin Cancer Biol. 1993 Dec;4(6):341–347. [PubMed] [Google Scholar]
  4. Bounpheng M. A., Morrish T. A., Dodds S. G., Christy B. A. Negative regulation of selected bHLH proteins by eHAND. Exp Cell Res. 2000 Jun 15;257(2):320–331. doi: 10.1006/excr.2000.4898. [DOI] [PubMed] [Google Scholar]
  5. Brady G., Iscove N. N. Construction of cDNA libraries from single cells. Methods Enzymol. 1993;225:611–623. doi: 10.1016/0076-6879(93)25039-5. [DOI] [PubMed] [Google Scholar]
  6. Breitschopf H., Suchanek G., Gould R. M., Colman D. R., Lassmann H. In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathol. 1992;84(6):581–587. doi: 10.1007/BF00227734. [DOI] [PubMed] [Google Scholar]
  7. Coucouvanis E., Martin G. R. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell. 1995 Oct 20;83(2):279–287. doi: 10.1016/0092-8674(95)90169-8. [DOI] [PubMed] [Google Scholar]
  8. Cross J. C., Flannery M. L., Blanar M. A., Steingrimsson E., Jenkins N. A., Copeland N. G., Rutter W. J., Werb Z. Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development. 1995 Aug;121(8):2513–2523. doi: 10.1242/dev.121.8.2513. [DOI] [PubMed] [Google Scholar]
  9. Cross J. C. Genetic insights into trophoblast differentiation and placental morphogenesis. Semin Cell Dev Biol. 2000 Apr;11(2):105–113. doi: 10.1006/scdb.2000.0156. [DOI] [PubMed] [Google Scholar]
  10. Cross J. C., Werb Z., Fisher S. J. Implantation and the placenta: key pieces of the development puzzle. Science. 1994 Dec 2;266(5190):1508–1518. doi: 10.1126/science.7985020. [DOI] [PubMed] [Google Scholar]
  11. Cserjesi P., Brown D., Lyons G. E., Olson E. N. Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev Biol. 1995 Aug;170(2):664–678. doi: 10.1006/dbio.1995.1245. [DOI] [PubMed] [Google Scholar]
  12. Damsky C. H., Fisher S. J. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr Opin Cell Biol. 1998 Oct;10(5):660–666. doi: 10.1016/s0955-0674(98)80043-4. [DOI] [PubMed] [Google Scholar]
  13. Firulli A. B., McFadden D. G., Lin Q., Srivastava D., Olson E. N. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat Genet. 1998 Mar;18(3):266–270. doi: 10.1038/ng0398-266. [DOI] [PubMed] [Google Scholar]
  14. Firulli B. A., Hadzic D. B., McDaid J. R., Firulli A. B. The basic helix-loop-helix transcription factors dHAND and eHAND exhibit dimerization characteristics that suggest complex regulation of function. J Biol Chem. 2000 Oct 27;275(43):33567–33573. doi: 10.1074/jbc.M005888200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fisher A. L., Caudy M. Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev. 1998 Jul 1;12(13):1931–1940. doi: 10.1101/gad.12.13.1931. [DOI] [PubMed] [Google Scholar]
  16. Fisher A., Caudy M. The function of hairy-related bHLH repressor proteins in cell fate decisions. Bioessays. 1998 Apr;20(4):298–306. doi: 10.1002/(SICI)1521-1878(199804)20:4<298::AID-BIES6>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  17. Flanagan J. R., Becker K. G., Ennist D. L., Gleason S. L., Driggers P. H., Levi B. Z., Appella E., Ozato K. Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol. 1992 Jan;12(1):38–44. doi: 10.1128/mcb.12.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Guillemot F., Nagy A., Auerbach A., Rossant J., Joyner A. L. Essential role of Mash-2 in extraembryonic development. Nature. 1994 Sep 22;371(6495):333–336. doi: 10.1038/371333a0. [DOI] [PubMed] [Google Scholar]
  19. Guillemot F. Vertebrate bHLH genes and the determination of neuronal fates. Exp Cell Res. 1999 Dec 15;253(2):357–364. doi: 10.1006/excr.1999.4717. [DOI] [PubMed] [Google Scholar]
  20. Henthorn P., Kiledjian M., Kadesch T. Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science. 1990 Jan 26;247(4941):467–470. doi: 10.1126/science.2105528. [DOI] [PubMed] [Google Scholar]
  21. Hollenberg S. M., Sternglanz R., Cheng P. F., Weintraub H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol Cell Biol. 1995 Jul;15(7):3813–3822. doi: 10.1128/mcb.15.7.3813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hu J. S., Olson E. N., Kingston R. E. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol. 1992 Mar;12(3):1031–1042. doi: 10.1128/mcb.12.3.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ishibashi M., Sasai Y., Nakanishi S., Kageyama R. Molecular characterization of HES-2, a mammalian helix-loop-helix factor structurally related to Drosophila hairy and Enhancer of split. Eur J Biochem. 1993 Aug 1;215(3):645–652. doi: 10.1111/j.1432-1033.1993.tb18075.x. [DOI] [PubMed] [Google Scholar]
  24. Janatpour M. J., McMaster M. T., Genbacev O., Zhou Y., Dong J., Cross J. C., Israel M. A., Fisher S. J. Id-2 regulates critical aspects of human cytotrophoblast differentiation, invasion and migration. Development. 2000 Feb;127(3):549–558. doi: 10.1242/dev.127.3.549. [DOI] [PubMed] [Google Scholar]
  25. Janatpour M. J., Utset M. F., Cross J. C., Rossant J., Dong J., Israel M. A., Fisher S. J. A repertoire of differentially expressed transcription factors that offers insight into mechanisms of human cytotrophoblast differentiation. Dev Genet. 1999;25(2):146–157. doi: 10.1002/(SICI)1520-6408(1999)25:2<146::AID-DVG9>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  26. Jen Y., Weintraub H., Benezra R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 1992 Aug;6(8):1466–1479. doi: 10.1101/gad.6.8.1466. [DOI] [PubMed] [Google Scholar]
  27. Kageyama R., Ishibashi M., Takebayashi K., Tomita K. bHLH transcription factors and mammalian neuronal differentiation. Int J Biochem Cell Biol. 1997 Dec;29(12):1389–1399. doi: 10.1016/s1357-2725(97)89968-2. [DOI] [PubMed] [Google Scholar]
  28. Kee B. L., Quong M. W., Murre C. E2A proteins: essential regulators at multiple stages of B-cell development. Immunol Rev. 2000 Jun;175:138–149. [PubMed] [Google Scholar]
  29. Kingdom J. C., Kaufmann P. Oxygen and placental vascular development. Adv Exp Med Biol. 1999;474:259–275. doi: 10.1007/978-1-4615-4711-2_20. [DOI] [PubMed] [Google Scholar]
  30. Kliman H. J., Nestler J. E., Sermasi E., Sanger J. M., Strauss J. F., 3rd Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 1986 Apr;118(4):1567–1582. doi: 10.1210/endo-118-4-1567. [DOI] [PubMed] [Google Scholar]
  31. Knöfler M., Meinhardt G., Vasicek R., Husslein P., Egarter C. Molecular cloning of the human Hand1 gene/cDNA and its tissue-restricted expression in cytotrophoblastic cells and heart. Gene. 1998 Dec 11;224(1-2):77–86. doi: 10.1016/s0378-1119(98)00511-3. [DOI] [PubMed] [Google Scholar]
  32. Knöfler M., Saleh L., Bauer S., Vasicek R., Griesinger G., Strohmer H., Helmer H., Husslein P. Promoter elements and transcription factors involved in differentiation-dependent human chorionic gonadotrophin-alpha messenger ribonucleic acid expression of term villous trophoblasts. Endocrinology. 2000 Oct;141(10):3737–3748. doi: 10.1210/endo.141.10.7713. [DOI] [PubMed] [Google Scholar]
  33. Knöfler M., Saleh L., Strohmer H., Husslein P., Wolschek M. F. Cyclic AMP- and differentiation-dependent regulation of the proximal alphaHCG gene promoter in term villous trophoblasts. Mol Hum Reprod. 1999 Jun;5(6):573–580. doi: 10.1093/molehr/5.6.573. [DOI] [PubMed] [Google Scholar]
  34. Krapp A., Knöfler M., Ledermann B., Bürki K., Berney C., Zoerkler N., Hagenbüchle O., Wellauer P. K. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 1998 Dec 1;12(23):3752–3763. doi: 10.1101/gad.12.23.3752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kraut N., Snider L., Chen C. M., Tapscott S. J., Groudine M. Requirement of the mouse I-mfa gene for placental development and skeletal patterning. EMBO J. 1998 Nov 2;17(21):6276–6288. doi: 10.1093/emboj/17.21.6276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Morgan M., Kniss D., McDonnell S. Expression of metalloproteinases and their inhibitors in human trophoblast continuous cell lines. Exp Cell Res. 1998 Jul 10;242(1):18–26. doi: 10.1006/excr.1997.3929. [DOI] [PubMed] [Google Scholar]
  37. Murre C., McCaw P. S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. doi: 10.1016/0092-8674(89)90682-x. [DOI] [PubMed] [Google Scholar]
  38. Quong M. W., Massari M. E., Zwart R., Murre C. A new transcriptional-activation motif restricted to a class of helix-loop-helix proteins is functionally conserved in both yeast and mammalian cells. Mol Cell Biol. 1993 Feb;13(2):792–800. doi: 10.1128/mcb.13.2.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Riley P., Anson-Cartwright L., Cross J. C. The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat Genet. 1998 Mar;18(3):271–275. doi: 10.1038/ng0398-271. [DOI] [PubMed] [Google Scholar]
  40. Russell M. W., Baker P., Izumo S. Cloning, chromosomal mapping, and expression of the human eHAND gene. Mamm Genome. 1997;8(11):863–865. doi: 10.1007/s003359900596. [DOI] [PubMed] [Google Scholar]
  41. Scott I. C., Anson-Cartwright L., Riley P., Reda D., Cross J. C. The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol Cell Biol. 2000 Jan;20(2):530–541. doi: 10.1128/mcb.20.2.530-541.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shi Y., Seto E., Chang L. S., Shenk T. Transcriptional repression by YY1, a human GLI-Krüppel-related protein, and relief of repression by adenovirus E1A protein. Cell. 1991 Oct 18;67(2):377–388. doi: 10.1016/0092-8674(91)90189-6. [DOI] [PubMed] [Google Scholar]
  43. Srivastava D., Cserjesi P., Olson E. N. A subclass of bHLH proteins required for cardiac morphogenesis. Science. 1995 Dec 22;270(5244):1995–1999. doi: 10.1126/science.270.5244.1995. [DOI] [PubMed] [Google Scholar]
  44. Steidl C., Leimeister C., Klamt B., Maier M., Nanda I., Dixon M., Clarke R., Schmid M., Gessler M. Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping, and mutation screening of a new bHLH gene family. Genomics. 2000 Jun 1;66(2):195–203. doi: 10.1006/geno.2000.6200. [DOI] [PubMed] [Google Scholar]
  45. Sun X. H., Baltimore D. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell. 1991 Jan 25;64(2):459–470. doi: 10.1016/0092-8674(91)90653-g. [DOI] [PubMed] [Google Scholar]
  46. Sun X. H., Copeland N. G., Jenkins N. A., Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol. 1991 Nov;11(11):5603–5611. doi: 10.1128/mcb.11.11.5603. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES