Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 15;362(Pt 1):1–12. doi: 10.1042/0264-6021:3620001

Cross-talk unfolded: MARCKS proteins.

Anna Arbuzova 1, Arndt A P Schmitz 1, Guy Vergères 1
PMCID: PMC1222354  PMID: 11829734

Abstract

The proteins of the MARCKS (myristoylated alanine-rich C kinase substrate) family were first identified as prominent substrates of protein kinase C (PKC). Since then, these proteins have been implicated in the regulation of brain development and postnatal survival, cellular migration and adhesion, as well as endo-, exo- and phago-cytosis, and neurosecretion. The effector domain of MARCKS proteins is phosphorylated by PKC, binds to calmodulin and contributes to membrane binding. This multitude of mutually exclusive interactions allows cross-talk between the signal transduction pathways involving PKC and calmodulin. This review focuses on recent, mostly biophysical and biochemical results renewing interest in this protein family. MARCKS membrane binding is now understood at the molecular level. From a structural point of view, there is a consensus emerging that MARCKS proteins are "natively unfolded". Interestingly, domains similar to the effector domain have been discovered in other proteins. Furthermore, since the effector domain enhances the polymerization of actin in vitro, MARCKS proteins have been proposed to mediate regulation of the actin cytoskeleton. However, the recent observations that MARCKS might serve to sequester phosphatidylinositol 4,5-bisphosphate in the plasma membrane of unstimulated cells suggest an alternative model for the control of the actin cytoskeleton. While myristoylation is classically considered to be a co-translational, irreversible event, new reports on MARCKS proteins suggest a more dynamic picture of this protein modification. Finally, studies with mice lacking MARCKS proteins have investigated the functions of these proteins during embryonic development in the intact organism.

Full Text

The Full Text of this article is available as a PDF (271.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aderem A. A., Albert K. A., Keum M. M., Wang J. K., Greengard P., Cohn Z. A. Stimulus-dependent myristoylation of a major substrate for protein kinase C. Nature. 1988 Mar 24;332(6162):362–364. doi: 10.1038/332362a0. [DOI] [PubMed] [Google Scholar]
  2. Aderem A. The MARCKS brothers: a family of protein kinase C substrates. Cell. 1992 Nov 27;71(5):713–716. doi: 10.1016/0092-8674(92)90546-o. [DOI] [PubMed] [Google Scholar]
  3. Albert K. A., Nairn A. C., Greengard P. The 87-kDa protein, a major specific substrate for protein kinase C: purification from bovine brain and characterization. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7046–7050. doi: 10.1073/pnas.84.20.7046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allen L. A., Aderem A. Protein kinase C regulates MARCKS cycling between the plasma membrane and lysosomes in fibroblasts. EMBO J. 1995 Mar 15;14(6):1109–1121. doi: 10.1002/j.1460-2075.1995.tb07094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allen L. H., Aderem A. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med. 1995 Sep 1;182(3):829–840. doi: 10.1084/jem.182.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Arbuzova A., Murray D., McLaughlin S. MARCKS, membranes, and calmodulin: kinetics of their interaction. Biochim Biophys Acta. 1998 Nov 10;1376(3):369–379. doi: 10.1016/s0304-4157(98)00011-2. [DOI] [PubMed] [Google Scholar]
  7. Arbuzova A., Wang L., Wang J., Hangyás-Mihályné G., Murray D., Honig B., McLaughlin S. Membrane binding of peptides containing both basic and aromatic residues. Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. Biochemistry. 2000 Aug 22;39(33):10330–10339. doi: 10.1021/bi001039j. [DOI] [PubMed] [Google Scholar]
  8. Ben-Tal N., Honig B., Peitzsch R. M., Denisov G., McLaughlin S. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys J. 1996 Aug;71(2):561–575. doi: 10.1016/S0006-3495(96)79280-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bhatnagar R. S., Gordon J. I. Understanding covalent modifications of proteins by lipids: where cell biology and biophysics mingle. Trends Cell Biol. 1997 Jan;7(1):14–20. doi: 10.1016/S0962-8924(97)10044-7. [DOI] [PubMed] [Google Scholar]
  10. Blackshear P. J. The MARCKS family of cellular protein kinase C substrates. J Biol Chem. 1993 Jan 25;268(3):1501–1504. [PubMed] [Google Scholar]
  11. Blackshear P. J., Tuttle J. S., Oakey R. J., Seldin M. F., Chery M., Philippe C., Stumpo D. J. Chromosomal mapping of the human (MACS) and mouse (Macs) genes encoding the MARCKS protein. Genomics. 1992 Sep;14(1):168–174. doi: 10.1016/s0888-7543(05)80300-3. [DOI] [PubMed] [Google Scholar]
  12. Botelho R. J., Teruel M., Dierckman R., Anderson R., Wells A., York J. D., Meyer T., Grinstein S. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol. 2000 Dec 25;151(7):1353–1368. doi: 10.1083/jcb.151.7.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Braun T., McIlhinney R. A., Vergères G. Myristoylation-dependent N-terminal cleavage of the myristoylated alanine-rich C kinase substrate (MARCKS) by cellular extracts. Biochimie. 2000 Aug;82(8):705–715. doi: 10.1016/s0300-9084(00)01154-8. [DOI] [PubMed] [Google Scholar]
  14. Bubb M. R., Lenox R. H., Edison A. S. Phosphorylation-dependent conformational changes induce a switch in the actin-binding function of MARCKS. J Biol Chem. 1999 Dec 17;274(51):36472–36478. doi: 10.1074/jbc.274.51.36472. [DOI] [PubMed] [Google Scholar]
  15. Bähr G., Diederich A., Vergères G., Winterhalter M. Interaction of the effector domain of MARCKS and MARCKS-related protein with lipid membranes revealed by electric potential measurements. Biochemistry. 1998 Nov 17;37(46):16252–16261. doi: 10.1021/bi981765a. [DOI] [PubMed] [Google Scholar]
  16. Casey P. J. Protein lipidation in cell signaling. Science. 1995 Apr 14;268(5208):221–225. doi: 10.1126/science.7716512. [DOI] [PubMed] [Google Scholar]
  17. Chakravarthy B., Morley P., Whitfield J. Ca2+-calmodulin and protein kinase Cs: a hypothetical synthesis of their conflicting convergences on shared substrate domains. Trends Neurosci. 1999 Jan;22(1):12–16. doi: 10.1016/s0166-2236(98)01288-0. [DOI] [PubMed] [Google Scholar]
  18. Chang S., Hemmings H. C., Jr, Aderem A. Stimulus-dependent phosphorylation of MacMARCKS, a protein kinase C substrate, in nerve termini and PC12 cells. J Biol Chem. 1996 Jan 12;271(2):1174–1178. doi: 10.1074/jbc.271.2.1174. [DOI] [PubMed] [Google Scholar]
  19. Chen J., Chang S., Duncan S. A., Okano H. J., Fishell G., Aderem A. Disruption of the MacMARCKS gene prevents cranial neural tube closure and results in anencephaly. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6275–6279. doi: 10.1073/pnas.93.13.6275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Chin D., Means A. R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000 Aug;10(8):322–328. doi: 10.1016/s0962-8924(00)01800-6. [DOI] [PubMed] [Google Scholar]
  21. Clarke P. R., Siddhanti S. R., Cohen P., Blackshear P. J. Okadaic acid-sensitive protein phosphatases dephosphorylate MARCKS, a major protein kinase C substrate. FEBS Lett. 1993 Dec 20;336(1):37–42. doi: 10.1016/0014-5793(93)81604-x. [DOI] [PubMed] [Google Scholar]
  22. Corradin S., Mauël J., Ransijn A., Stürzinger C., Vergères G. Down-regulation of MARCKS-related protein (MRP) in macrophages infected with Leishmania. J Biol Chem. 1999 Jun 11;274(24):16782–16787. doi: 10.1074/jbc.274.24.16782. [DOI] [PubMed] [Google Scholar]
  23. Corradin S., Ransijn A., Corradin G., Roggero M. A., Schmitz A. A., Schneider P., Mauël J., Vergères G. MARCKS-related protein (MRP) is a substrate for the Leishmania major surface protease leishmanolysin (gp63). J Biol Chem. 1999 Sep 3;274(36):25411–25418. doi: 10.1074/jbc.274.36.25411. [DOI] [PubMed] [Google Scholar]
  24. Cremona O., De Camilli P. Phosphoinositides in membrane traffic at the synapse. J Cell Sci. 2001 Mar;114(Pt 6):1041–1052. doi: 10.1242/jcs.114.6.1041. [DOI] [PubMed] [Google Scholar]
  25. Czech M. P. PIP2 and PIP3: complex roles at the cell surface. Cell. 2000 Mar 17;100(6):603–606. doi: 10.1016/s0092-8674(00)80696-0. [DOI] [PubMed] [Google Scholar]
  26. Edwards A. S., Scott J. D. A-kinase anchoring proteins: protein kinase A and beyond. Curr Opin Cell Biol. 2000 Apr;12(2):217–221. doi: 10.1016/s0955-0674(99)00085-x. [DOI] [PubMed] [Google Scholar]
  27. Gabev E., Kasianowicz J., Abbott T., McLaughlin S. Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2). Biochim Biophys Acta. 1989 Feb 13;979(1):105–112. doi: 10.1016/0005-2736(89)90529-4. [DOI] [PubMed] [Google Scholar]
  28. Garcia P., Gupta R., Shah S., Morris A. J., Rudge S. A., Scarlata S., Petrova V., McLaughlin S., Rebecchi M. J. The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry. 1995 Dec 12;34(49):16228–16234. doi: 10.1021/bi00049a039. [DOI] [PubMed] [Google Scholar]
  29. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998 Jan 23;279(5350):509–514. doi: 10.1126/science.279.5350.509. [DOI] [PubMed] [Google Scholar]
  30. Hartwig J. H., Thelen M., Rosen A., Janmey P. A., Nairn A. C., Aderem A. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature. 1992 Apr 16;356(6370):618–622. doi: 10.1038/356618a0. [DOI] [PubMed] [Google Scholar]
  31. Hinrichsen R. D., Blackshear P. J. Regulation of peptide-calmodulin complexes by protein kinase C in vivo. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1585–1589. doi: 10.1073/pnas.90.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Honda A., Nogami M., Yokozeki T., Yamazaki M., Nakamura H., Watanabe H., Kawamoto K., Nakayama K., Morris A. J., Frohman M. A. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell. 1999 Nov 24;99(5):521–532. doi: 10.1016/s0092-8674(00)81540-8. [DOI] [PubMed] [Google Scholar]
  33. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  34. Janmey P. A. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol. 1994;56:169–191. doi: 10.1146/annurev.ph.56.030194.001125. [DOI] [PubMed] [Google Scholar]
  35. Jin T., Yue L., Li J. In vivo interaction between dynamitin and MacMARCKS detected by the fluorescent resonance energy transfer method. J Biol Chem. 2001 Jan 22;276(16):12879–12884. doi: 10.1074/jbc.M010513200. [DOI] [PubMed] [Google Scholar]
  36. Kim J., Blackshear P. J., Johnson J. D., McLaughlin S. Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin. Biophys J. 1994 Jul;67(1):227–237. doi: 10.1016/S0006-3495(94)80473-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kim J., Shishido T., Jiang X., Aderem A., McLaughlin S. Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J Biol Chem. 1994 Nov 11;269(45):28214–28219. [PubMed] [Google Scholar]
  38. Laumas S., Abdel-Ghany M., Leister K., Resnick R., Kandrach A., Racker E. Decreased susceptibility of a 70-kDa protein to cathepsin L after phosphorylation by protein kinase C. Proc Natl Acad Sci U S A. 1989 May;86(9):3021–3025. doi: 10.1073/pnas.86.9.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Laux T., Fukami K., Thelen M., Golub T., Frey D., Caroni P. GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol. 2000 Jun 26;149(7):1455–1472. doi: 10.1083/jcb.149.7.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lemmon M. A., Ferguson K. M., O'Brien R., Sigler P. B., Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10472–10476. doi: 10.1073/pnas.92.23.10472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lemmon M. A., Ferguson K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 2000 Aug 15;350(Pt 1):1–18. [PMC free article] [PubMed] [Google Scholar]
  42. Manenti S., Sorokine O., Van Dorsselaer A., Taniguchi H. Affinity purification and characterization of myristoylated alanine-rich protein kinase C substrate (MARCKS) from bovine brain. Comparison of the cytoplasmic and the membrane-bound forms. J Biol Chem. 1992 Nov 5;267(31):22310–22315. [PubMed] [Google Scholar]
  43. Manenti S., Sorokine O., Van Dorsselaer A., Taniguchi H. Demyristoylation of the major substrate of protein kinase C (MARCKS) by the cytoplasmic fraction of brain synaptosomes. J Biol Chem. 1994 Mar 18;269(11):8309–8313. [PubMed] [Google Scholar]
  44. Manenti S., Sorokine O., Van Dorsselaer A., Taniguchi H. Isolation of the non-myristoylated form of a major substrate of protein kinase C (MARCKS) from bovine brain. J Biol Chem. 1993 Apr 5;268(10):6878–6881. [PubMed] [Google Scholar]
  45. Manenti S., Yamauchi E., Sorokine O., Knibiehler M., Van Dorsselaer A., Taniguchi H., Ducommun B., Darbon J. M. Phosphorylation of the myristoylated protein kinase C substrate MARCKS by the cyclin E-cyclin-dependent kinase 2 complex in vitro. Biochem J. 1999 Jun 15;340(Pt 3):775–782. [PMC free article] [PubMed] [Google Scholar]
  46. Martin T. F. PI(4,5)P(2) regulation of surface membrane traffic. Curr Opin Cell Biol. 2001 Aug;13(4):493–499. doi: 10.1016/s0955-0674(00)00241-6. [DOI] [PubMed] [Google Scholar]
  47. Martin T. F. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol. 1998;14:231–264. doi: 10.1146/annurev.cellbio.14.1.231. [DOI] [PubMed] [Google Scholar]
  48. Matsubara M., Yamauchi E., Hayashi N., Taniguchi H. MARCKS, a major protein kinase C substrate, assumes non-helical conformations both in solution and in complex with Ca2+-calmodulin. FEBS Lett. 1998 Jan 16;421(3):203–207. doi: 10.1016/s0014-5793(97)01557-3. [DOI] [PubMed] [Google Scholar]
  49. Matsuoka Y., Li X., Bennett V. Adducin: structure, function and regulation. Cell Mol Life Sci. 2000 Jun;57(6):884–895. doi: 10.1007/PL00000731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. McIlhinney R. A., McGlone K. Evidence for a non-myristoylated pool of the 80 kDa protein kinase C substrate of rat brain. Biochem J. 1990 Nov 1;271(3):681–685. doi: 10.1042/bj2710681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  52. McNamara R. K., Lenox R. H. Distribution of the protein kinase C substrates MARCKS and MRP in the postnatal developing rat brain. J Comp Neurol. 1998 Aug 3;397(3):337–356. [PubMed] [Google Scholar]
  53. McNamara R. K., Stumpo D. J., Morel L. M., Lewis M. H., Wakeland E. K., Blackshear P. J., Lenox R. H. Effect of reduced myristoylated alanine-rich C kinase substrate expression on hippocampal mossy fiber development and spatial learning in mutant mice: transgenic rescue and interactions with gene background. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14517–14522. doi: 10.1073/pnas.95.24.14517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  55. Michielin O., Ramsden J. J., Vergères G. Unmyristoylated MARCKS-related protein (MRP) binds to supported planar phosphatidylcholine membranes. Biochim Biophys Acta. 1998 Oct 15;1375(1-2):110–116. doi: 10.1016/s0005-2736(98)00141-2. [DOI] [PubMed] [Google Scholar]
  56. Murray D., Ben-Tal N., Honig B., McLaughlin S. Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure. 1997 Aug 15;5(8):985–989. doi: 10.1016/s0969-2126(97)00251-7. [DOI] [PubMed] [Google Scholar]
  57. Myat M. M., Anderson S., Allen L. A., Aderem A. MARCKS regulates membrane ruffling and cell spreading. Curr Biol. 1997 Aug 1;7(8):611–614. doi: 10.1016/s0960-9822(06)00262-4. [DOI] [PubMed] [Google Scholar]
  58. Myat M. M., Chang S., Rodriguez-Boulan E., Aderem A. Identification of the basolateral targeting determinant of a peripheral membrane protein, MacMARCKS, in polarized cells. Curr Biol. 1998 Jun 4;8(12):677–683. doi: 10.1016/s0960-9822(98)70273-8. [DOI] [PubMed] [Google Scholar]
  59. Newton A. C., Johnson J. E. Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta. 1998 Aug 21;1376(2):155–172. doi: 10.1016/s0304-4157(98)00003-3. [DOI] [PubMed] [Google Scholar]
  60. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  61. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  62. Ohmori S., Sakai N., Shirai Y., Yamamoto H., Miyamoto E., Shimizu N., Saito N. Importance of protein kinase C targeting for the phosphorylation of its substrate, myristoylated alanine-rich C-kinase substrate. J Biol Chem. 2000 Aug 25;275(34):26449–26457. doi: 10.1074/jbc.M003588200. [DOI] [PubMed] [Google Scholar]
  63. Ouimet C. C., Wang J. K., Walaas S. I., Albert K. A., Greengard P. Localization of the MARCKS (87 kDa) protein, a major specific substrate for protein kinase C, in rat brain. J Neurosci. 1990 May;10(5):1683–1698. doi: 10.1523/JNEUROSCI.10-05-01683.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  65. Peitzsch R. M., McLaughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry. 1993 Oct 5;32(39):10436–10443. doi: 10.1021/bi00090a020. [DOI] [PubMed] [Google Scholar]
  66. Porumb T., Crivici A., Blackshear P. J., Ikura M. Calcium binding and conformational properties of calmodulin complexed with peptides derived from myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP). Eur Biophys J. 1997;25(4):239–247. doi: 10.1007/s002490050036. [DOI] [PubMed] [Google Scholar]
  67. Puius Y. A., Mahoney N. M., Almo S. C. The modular structure of actin-regulatory proteins. Curr Opin Cell Biol. 1998 Feb;10(1):23–34. doi: 10.1016/s0955-0674(98)80083-5. [DOI] [PubMed] [Google Scholar]
  68. Qin Z., Cafiso D. S. Membrane structure of protein kinase C and calmodulin binding domain of myristoylated alanine rich C kinase substrate determined by site-directed spin labeling. Biochemistry. 1996 Mar 5;35(9):2917–2925. doi: 10.1021/bi9521452. [DOI] [PubMed] [Google Scholar]
  69. Qin Z., Wertz S. L., Jacob J., Savino Y., Cafiso D. S. Defining protein-protein interactions using site-directed spin-labeling: the binding of protein kinase C substrates to calmodulin. Biochemistry. 1996 Oct 15;35(41):13272–13276. doi: 10.1021/bi961747y. [DOI] [PubMed] [Google Scholar]
  70. Ramsden J. J., Vergères G. Nonelectrostatic contributions to the binding of MARCKS-related protein to lipid bilayers. Arch Biochem Biophys. 1999 Nov 15;371(2):241–245. doi: 10.1006/abbi.1999.1451. [DOI] [PubMed] [Google Scholar]
  71. Raucher D., Stauffer T., Chen W., Shen K., Guo S., York J. D., Sheetz M. P., Meyer T. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell. 2000 Jan 21;100(2):221–228. doi: 10.1016/s0092-8674(00)81560-3. [DOI] [PubMed] [Google Scholar]
  72. Rosen A., Keenan K. F., Thelen M., Nairn A. C., Aderem A. Activation of protein kinase C results in the displacement of its myristoylated, alanine-rich substrate from punctate structures in macrophage filopodia. J Exp Med. 1990 Oct 1;172(4):1211–1215. doi: 10.1084/jem.172.4.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Rossi E. A., Li Z., Feng H., Rubin C. S. Characterization of the targeting, binding, and phosphorylation site domains of an A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog that are encoded by a single gene. J Biol Chem. 1999 Sep 17;274(38):27201–27210. doi: 10.1074/jbc.274.38.27201. [DOI] [PubMed] [Google Scholar]
  74. Schleiff E., Schmitz A., McIlhinney R. A., Manenti S., Vergères G. Myristoylation does not modulate the properties of MARCKS-related protein (MRP) in solution. J Biol Chem. 1996 Oct 25;271(43):26794–26802. doi: 10.1074/jbc.271.43.26794. [DOI] [PubMed] [Google Scholar]
  75. Schmitz A. A., Pleschke J. M., Kleczkowska H. E., Althaus F. R., Vergères G. Poly(ADP-ribose) modulates the properties of MARCKS proteins. Biochemistry. 1998 Jun 30;37(26):9520–9527. doi: 10.1021/bi973063b. [DOI] [PubMed] [Google Scholar]
  76. Schmitz A. A., Schleiff E., Röhring C., Loidl-Stahlhofen A., Vergères G. Interactions of myristoylated alanine-rich C kinase substrate (MARCKS)-related protein with a novel solid-supported lipid membrane system (TRANSIL). Anal Biochem. 1999 Mar 15;268(2):343–353. doi: 10.1006/abio.1998.3080. [DOI] [PubMed] [Google Scholar]
  77. Schmitz A. A., Ulrich A., Vergères G. Membrane binding of MARCKS-related protein studied by tryptophan fluorescence spectroscopy. Arch Biochem Biophys. 2000 Aug 15;380(2):380–386. doi: 10.1006/abbi.2000.1925. [DOI] [PubMed] [Google Scholar]
  78. Sechi A. S., Wehland J. The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane. J Cell Sci. 2000 Nov;113(Pt 21):3685–3695. doi: 10.1242/jcs.113.21.3685. [DOI] [PubMed] [Google Scholar]
  79. Seki K., Chen H. C., Huang K. P. Dephosphorylation of protein kinase C substrates, neurogranin, neuromodulin, and MARCKS, by calcineurin and protein phosphatases 1 and 2A. Arch Biochem Biophys. 1995 Feb 1;316(2):673–679. doi: 10.1006/abbi.1995.1090. [DOI] [PubMed] [Google Scholar]
  80. Seykora J. T., Myat M. M., Allen L. A., Ravetch J. V., Aderem A. Molecular determinants of the myristoyl-electrostatic switch of MARCKS. J Biol Chem. 1996 Aug 2;271(31):18797–18802. doi: 10.1074/jbc.271.31.18797. [DOI] [PubMed] [Google Scholar]
  81. Sheetz M. P. Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol. 2001 May;2(5):392–396. doi: 10.1038/35073095. [DOI] [PubMed] [Google Scholar]
  82. Spizz G., Blackshear P. J. Identification and characterization of cathepsin B as the cellular MARCKS cleaving enzyme. J Biol Chem. 1997 Sep 19;272(38):23833–23842. doi: 10.1074/jbc.272.38.23833. [DOI] [PubMed] [Google Scholar]
  83. Spizz G., Blackshear P. J. Overexpression of the myristoylated alanine-rich C-kinase substrate inhibits cell adhesion to extracellular matrix components. J Biol Chem. 2001 Jun 18;276(34):32264–32273. doi: 10.1074/jbc.M103960200. [DOI] [PubMed] [Google Scholar]
  84. Spizz G., Blackshear P. J. Protein kinase C-mediated phosphorylation of the myristoylated alanine-rich C-kinase substrate protects it from specific proteolytic cleavage. J Biol Chem. 1996 Jan 5;271(1):553–562. doi: 10.1074/jbc.271.1.553. [DOI] [PubMed] [Google Scholar]
  85. Stull J. T. Ca2+-dependent cell signaling through calmodulin-activated protein phosphatase and protein kinases minireview series. J Biol Chem. 2000 Nov 28;276(4):2311–2312. doi: 10.1074/jbc.R000030200. [DOI] [PubMed] [Google Scholar]
  86. Stumpo D. J., Bock C. B., Tuttle J. S., Blackshear P. J. MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):944–948. doi: 10.1073/pnas.92.4.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Stumpo D. J., Eddy R. L., Jr, Haley L. L., Sait S., Shows T. B., Lai W. S., Young W. S., 3rd, Speer M. C., Dehejia A., Polymeropoulos M. Promoter sequence, expression, and fine chromosomal mapping of the human gene (MLP) encoding the MARCKS-like protein: identification of neighboring and linked polymorphic loci for MLP and MACS and use in the evaluation of human neural tube defects. Genomics. 1998 Apr 15;49(2):253–264. doi: 10.1006/geno.1998.5247. [DOI] [PubMed] [Google Scholar]
  88. Swierczynski S. L., Blackshear P. J. Membrane association of the myristoylated alanine-rich C kinase substrate (MARCKS) protein. Mutational analysis provides evidence for complex interactions. J Biol Chem. 1995 Jun 2;270(22):13436–13445. doi: 10.1074/jbc.270.22.13436. [DOI] [PubMed] [Google Scholar]
  89. Swierczynski S. L., Blackshear P. J. Myristoylation-dependent and electrostatic interactions exert independent effects on the membrane association of the myristoylated alanine-rich protein kinase C substrate protein in intact cells. J Biol Chem. 1996 Sep 20;271(38):23424–23430. doi: 10.1074/jbc.271.38.23424. [DOI] [PubMed] [Google Scholar]
  90. Swierczynski S. L., Siddhanti S. R., Tuttle J. S., Blackshear P. J. Nonmyristoylated MARCKS complements some but not all of the developmental defects associated with MARCKS deficiency in mice. Dev Biol. 1996 Oct 10;179(1):135–147. doi: 10.1006/dbio.1996.0246. [DOI] [PubMed] [Google Scholar]
  91. Takasaki A., Hayashi N., Matsubara M., Yamauchi E., Taniguchi H. Identification of the calmodulin-binding domain of neuron-specific protein kinase C substrate protein CAP-22/NAP-22. Direct involvement of protein myristoylation in calmodulin-target protein interaction. J Biol Chem. 1999 Apr 23;274(17):11848–11853. doi: 10.1074/jbc.274.17.11848. [DOI] [PubMed] [Google Scholar]
  92. Tall E. G., Spector I., Pentyala S. N., Bitter I., Rebecchi M. J. Dynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures. Curr Biol. 2000 Jun 15;10(12):743–746. doi: 10.1016/s0960-9822(00)00541-8. [DOI] [PubMed] [Google Scholar]
  93. Tang J. X., Janmey P. A. The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. J Biol Chem. 1996 Apr 12;271(15):8556–8563. doi: 10.1074/jbc.271.15.8556. [DOI] [PubMed] [Google Scholar]
  94. Taniguchi H., Manenti S. Interaction of myristoylated alanine-rich protein kinase C substrate (MARCKS) with membrane phospholipids. J Biol Chem. 1993 May 15;268(14):9960–9963. [PubMed] [Google Scholar]
  95. Taniguchi H., Manenti S., Suzuki M., Titani K. Myristoylated alanine-rich C kinase substrate (MARCKS), a major protein kinase C substrate, is an in vivo substrate of proline-directed protein kinase(s). A mass spectroscopic analysis of the post-translational modifications. J Biol Chem. 1994 Jul 15;269(28):18299–18302. [PubMed] [Google Scholar]
  96. Taniguchi H. Protein myristoylation in protein-lipid and protein-protein interactions. Biophys Chem. 1999 Dec 13;82(2-3):129–137. doi: 10.1016/s0301-4622(99)00112-x. [DOI] [PubMed] [Google Scholar]
  97. Thelen M., Rosen A., Nairn A. C., Aderem A. Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature. 1991 May 23;351(6324):320–322. doi: 10.1038/351320a0. [DOI] [PubMed] [Google Scholar]
  98. Toker A. The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr Opin Cell Biol. 1998 Apr;10(2):254–261. doi: 10.1016/s0955-0674(98)80148-8. [DOI] [PubMed] [Google Scholar]
  99. Ulrich A., Schmitz A. A., Braun T., Yuan T., Vogel H. J., Vergères G. Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5191–5196. doi: 10.1073/pnas.090500397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Underhill D. M., Chen J., Allen L. A., Aderem A. MacMARCKS is not essential for phagocytosis in macrophages. J Biol Chem. 1998 Dec 11;273(50):33619–33623. doi: 10.1074/jbc.273.50.33619. [DOI] [PubMed] [Google Scholar]
  101. Verghese G. M., Johnson J. D., Vasulka C., Haupt D. M., Stumpo D. J., Blackshear P. J. Protein kinase C-mediated phosphorylation and calmodulin binding of recombinant myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein. J Biol Chem. 1994 Mar 25;269(12):9361–9367. [PubMed] [Google Scholar]
  102. Vergères G., Manenti S., Weber T., Stürzinger C. The myristoyl moiety of myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein is embedded in the membrane. J Biol Chem. 1995 Aug 25;270(34):19879–19887. doi: 10.1074/jbc.270.34.19879. [DOI] [PubMed] [Google Scholar]
  103. Vergères G., Ramsden J. J. Binding of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein (MRP) to vesicular phospholipid membranes. Biochem J. 1998 Feb 15;330(Pt 1):5–11. doi: 10.1042/bj3300005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Vergères G., Ramsden J. J. Regulation of the binding of myristoylated alanine-rich C kinase substrate (MARCKS) related protein to lipid bilayer membranes by calmodulin. Arch Biochem Biophys. 2000 Jun 1;378(1):45–50. doi: 10.1006/abbi.2000.1809. [DOI] [PubMed] [Google Scholar]
  105. Victor K., Jacob J., Cafiso D. S. Interactions controlling the membrane binding of basic protein domains: phenylalanine and the attachment of the myristoylated alanine-rich C-kinase substrate protein to interfaces. Biochemistry. 1999 Sep 28;38(39):12527–12536. doi: 10.1021/bi990847b. [DOI] [PubMed] [Google Scholar]
  106. Wang J., Arbuzova A., Hangyás-Mihályné G., McLaughlin S. The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2000 Oct 25;276(7):5012–5019. doi: 10.1074/jbc.M008355200. [DOI] [PubMed] [Google Scholar]
  107. Watson D. G., Lenox R. H. Chronic lithium-induced down-regulation of MARCKS in immortalized hippocampal cells: potentiation by muscarinic receptor activation. J Neurochem. 1996 Aug;67(2):767–777. doi: 10.1046/j.1471-4159.1996.67020767.x. [DOI] [PubMed] [Google Scholar]
  108. Weinreb P. H., Zhen W., Poon A. W., Conway K. A., Lansbury P. T., Jr NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry. 1996 Oct 29;35(43):13709–13715. doi: 10.1021/bi961799n. [DOI] [PubMed] [Google Scholar]
  109. Wimley W. C., White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol. 1996 Oct;3(10):842–848. doi: 10.1038/nsb1096-842. [DOI] [PubMed] [Google Scholar]
  110. Wohnsland F., Schmitz A. A., Steinmetz M. O., Aebi U., Vergéres G. Interaction between actin and the effector peptide of MARCKS-related protein. Identification of functional amino acid segments. J Biol Chem. 2000 Jul 7;275(27):20873–20879. doi: 10.1074/jbc.M910298199. [DOI] [PubMed] [Google Scholar]
  111. Wohnsland F., Steinmetz M. O., Aebi U., Vergères G. MARCKS-related protein binds to actin without significantly affecting actin polymerization or network structure. Myristoylated alanine-rich C kinase substrate. J Struct Biol. 2000 Sep;131(3):217–224. doi: 10.1006/jsbi.2000.4299. [DOI] [PubMed] [Google Scholar]
  112. Wohnsland F, Schmitz AA, Steinmetz MO, Aebi U, Vergeres G. Influence of the effector peptide of MARCKS-related protein on actin polymerization: a kinetic analysis. Biophys Chem. 2000 Jul 15;85(2-3):169–177. doi: 10.1016/s0301-4622(00)00113-7. [DOI] [PubMed] [Google Scholar]
  113. Wright P. E., Dyson H. J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. 1999 Oct 22;293(2):321–331. doi: 10.1006/jmbi.1999.3110. [DOI] [PubMed] [Google Scholar]
  114. Wu M., Chen D. F., Sasaoka T., Tonegawa S. Neural tube defects and abnormal brain development in F52-deficient mice. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2110–2115. doi: 10.1073/pnas.93.5.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Wu W. C., Walaas S. I., Nairn A. C., Greengard P. Calcium/phospholipid regulates phosphorylation of a Mr "87k" substrate protein in brain synaptosomes. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5249–5253. doi: 10.1073/pnas.79.17.5249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Yamauchi E., Kiyonami R., Kanai M., Taniguchi H. The C-terminal conserved domain of MARCKS is phosphorylated in vivo by proline-directed protein kinase. Application of ion trap mass spectrometry to the determination of protein phosphorylation sites. J Biol Chem. 1998 Feb 20;273(8):4367–4371. doi: 10.1074/jbc.273.8.4367. [DOI] [PubMed] [Google Scholar]
  117. Yarmola E. G., Edison A. S., Lenox R. H., Bubb M. R. Actin filament cross-linking by MARCKS: characterization of two actin-binding sites within the phosphorylation site domain. J Biol Chem. 2001 Apr 6;276(25):22351–22358. doi: 10.1074/jbc.M101457200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES