Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 15;362(Pt 1):23–32. doi: 10.1042/0264-6021:3620023

Inhibition of mitochondrial calcium-independent phospholipase A2 (iPLA2) attenuates mitochondrial phospholipid loss and is cardioprotective.

Scott D Williams 1, Roberta A Gottlieb 1
PMCID: PMC1222356  PMID: 11829736

Abstract

Calcium-independent phospholipase A(2) (iPLA(2)) is the predominant phospholipase A(2) present in myocardium, and its pathophysiological role in acute myocardial infarction has been suggested by the rapid increase in membrane-associated iPLA(2) activity during myocardial ischaemia and reperfusion (I/R). We therefore examined iPLA(2) in mitochondrial fractions prepared from Langendorff-perfused adult rabbit hearts. Our studies indicate that iPLA(2)beta is present in rabbit heart mitochondrial inner membranes with no apparent translocation during ischaemia, I/R or preconditioning. Mitochondrion-associated iPLA(2) was catalytically competent and exhibited 2-, 3- and 2.5-fold increases in measured iPLA(2) activity following ischaemia, I/R and preconditioning, respectively, when compared with the activity of iPLA(2) measured in mitochondria from control hearts. Mitochondrial phospholipids are essential for maintaining the ordered structure and function of the organelle. I/R resulted in a rapid overall decrease in phosphatidylcholine and phosphatidylethanolamine glycerophospholipid species, as determined by electrospray ionization MS, that was partially alleviated by pretreatment of hearts with the iPLA(2)-specific inhibitor, bromoenol lactone (BEL). Pretreatment of I/R hearts with 10 microM BEL significantly reduced the infarct size almost to that of continuously perfused hearts and was cardioprotective only when administered prior to ischaemia. Cardioprotection by BEL was reversed by the simultaneous perfusion of 100 microM 5-hydroxydecanoate, implicating the mitochondrial K(ATP) channel in BEL-mediated protection from I/R. Preconditioning also significantly reduced the infarct size in response to I/R but protection was lost by concurrent perfusion of 10 microM arachidonic acid. Taken together, these data strongly implicate mitochondria-associated iPLA(2) in the signal transduction of myocardial I/R injury.

Full Text

The Full Text of this article is available as a PDF (205.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal M. L., Larkin H. E., Zaidi S. I., Mukhtar H., Oleinick N. L. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells. Cancer Res. 1993 Dec 15;53(24):5897–5902. [PubMed] [Google Scholar]
  2. Atsumi G., Tajima M., Hadano A., Nakatani Y., Murakami M., Kudo I. Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2, which undergoes proteolytic inactivation. J Biol Chem. 1998 May 29;273(22):13870–13877. doi: 10.1074/jbc.273.22.13870. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Borutaite V., Mildaziene V., Brown G. C., Brand M. D. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Biochim Biophys Acta. 1995 Dec 12;1272(3):154–158. doi: 10.1016/0925-4439(95)00080-1. [DOI] [PubMed] [Google Scholar]
  5. Bouchard J. F., Dumont E., Lamontagne D. Evidence that prostaglandins I2, E2, and D2 may activate ATP sensitive potassium channels in the isolated rat heart. Cardiovasc Res. 1994 Jun;28(6):901–905. doi: 10.1093/cvr/28.6.901. [DOI] [PubMed] [Google Scholar]
  6. Caldwell R. A., Baumgarten C. M. Plasmalogen-derived lysolipid induces a depolarizing cation current in rabbit ventricular myocytes. Circ Res. 1998 Sep 7;83(5):533–540. doi: 10.1161/01.res.83.5.533. [DOI] [PubMed] [Google Scholar]
  7. Cohen M. V., Baines C. P., Downey J. M. Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol. 2000;62:79–109. doi: 10.1146/annurev.physiol.62.1.79. [DOI] [PubMed] [Google Scholar]
  8. Comte J., Gautheron D. C. Preparation of outer membrane from pig heart mitochondria. Methods Enzymol. 1979;55:98–104. doi: 10.1016/0076-6879(79)55013-7. [DOI] [PubMed] [Google Scholar]
  9. Corr P. B., Gross R. W., Sobel B. E. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res. 1984 Aug;55(2):135–154. doi: 10.1161/01.res.55.2.135. [DOI] [PubMed] [Google Scholar]
  10. Corr P. B., Yamada K. A. Selected metabolic alterations in the ischemic heart and their contributions to arrhythmogenesis. Herz. 1995 Jun;20(3):156–168. [PubMed] [Google Scholar]
  11. Di Lisa F., Bernardi P. Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem. 1998 Jul;184(1-2):379–391. [PubMed] [Google Scholar]
  12. Duan J., Karmazyn M. Relationship between oxidative phosphorylation and adenine nucleotide translocase activity of two populations of cardiac mitochondria and mechanical recovery of ischemic hearts following reperfusion. Can J Physiol Pharmacol. 1989 Jul;67(7):704–709. doi: 10.1139/y89-114. [DOI] [PubMed] [Google Scholar]
  13. Eddlestone G. T. ATP-sensitive K channel modulation by products of PLA2 action in the insulin-secreting HIT cell line. Am J Physiol. 1995 Jan;268(1 Pt 1):C181–C190. doi: 10.1152/ajpcell.1995.268.1.C181. [DOI] [PubMed] [Google Scholar]
  14. Ella K. M., Meier G. P., Bradshaw C. D., Huffman K. M., Spivey E. C., Meier K. E. A fluorescent assay for agonist-activated phospholipase D in mammalian cell extracts. Anal Biochem. 1994 Apr;218(1):136–142. doi: 10.1006/abio.1994.1152. [DOI] [PubMed] [Google Scholar]
  15. Farber J. L., Chien K. R., Mittnacht S., Jr Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am J Pathol. 1981 Feb;102(2):271–281. [PMC free article] [PubMed] [Google Scholar]
  16. Fliss H., Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996 Nov;79(5):949–956. doi: 10.1161/01.res.79.5.949. [DOI] [PubMed] [Google Scholar]
  17. Ford D. A., Gross R. W. Differential accumulation of diacyl and plasmalogenic diglycerides during myocardial ischemia. Circ Res. 1989 Jan;64(1):173–177. doi: 10.1161/01.res.64.1.173. [DOI] [PubMed] [Google Scholar]
  18. Ford D. A., Hazen S. L., Saffitz J. E., Gross R. W. The rapid and reversible activation of a calcium-independent plasmalogen-selective phospholipase A2 during myocardial ischemia. J Clin Invest. 1991 Jul;88(1):331–335. doi: 10.1172/JCI115296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Garlid K. D., Paucek P., Yarov-Yarovoy V., Murray H. N., Darbenzio R. B., D'Alonzo A. J., Lodge N. J., Smith M. A., Grover G. J. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res. 1997 Dec;81(6):1072–1082. doi: 10.1161/01.res.81.6.1072. [DOI] [PubMed] [Google Scholar]
  20. Gottlieb R. A., Burleson K. O., Kloner R. A., Babior B. M., Engler R. L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994 Oct;94(4):1621–1628. doi: 10.1172/JCI117504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gross G. J., Fryer R. M. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res. 1999 May 14;84(9):973–979. doi: 10.1161/01.res.84.9.973. [DOI] [PubMed] [Google Scholar]
  22. Gross R. W. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry. 1984 Jan 3;23(1):158–165. doi: 10.1021/bi00296a026. [DOI] [PubMed] [Google Scholar]
  23. Gubitosi-Klug R. A., Yu S. P., Choi D. W., Gross R. W. Concomitant acceleration of the activation and inactivation kinetics of the human delayed rectifier K+ channel (Kv1.1) by Ca(2+)-independent phospholipase A2. J Biol Chem. 1995 Feb 17;270(7):2885–2888. doi: 10.1074/jbc.270.7.2885. [DOI] [PubMed] [Google Scholar]
  24. Halestrap A. P., Kerr P. M., Javadov S., Woodfield K. Y. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):79–94. doi: 10.1016/s0005-2728(98)00122-4. [DOI] [PubMed] [Google Scholar]
  25. Han X. L., Zupan L. A., Hazen S. L., Gross R. W. Semisynthesis and purification of homogeneous plasmenylcholine molecular species. Anal Biochem. 1992 Jan;200(1):119–124. doi: 10.1016/0003-2697(92)90286-g. [DOI] [PubMed] [Google Scholar]
  26. Hayakawa M., Ishida N., Takeuchi K., Shibamoto S., Hori T., Oku N., Ito F., Tsujimoto M. Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J Biol Chem. 1993 May 25;268(15):11290–11295. [PubMed] [Google Scholar]
  27. Hazen S. L., Ford D. A., Gross R. W. Activation of a membrane-associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasmalogen substrate. J Biol Chem. 1991 Mar 25;266(9):5629–5633. [PubMed] [Google Scholar]
  28. Kajstura J., Cheng W., Reiss K., Clark W. A., Sonnenblick E. H., Krajewski S., Reed J. C., Olivetti G., Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest. 1996 Jan;74(1):86–107. [PubMed] [Google Scholar]
  29. Katz A. M., Messineo F. C. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res. 1981 Jan;48(1):1–16. doi: 10.1161/01.res.48.1.1. [DOI] [PubMed] [Google Scholar]
  30. Kevala J. H., Kim H. Y. Determination of substrate preference in phosphatidylserine decarboxylation by liquid chromatography-electrospray ionization mass spectrometry. Anal Biochem. 2001 May 1;292(1):130–138. doi: 10.1006/abio.2001.5076. [DOI] [PubMed] [Google Scholar]
  31. Kim D., Duff R. A. Regulation of K+ channels in cardiac myocytes by free fatty acids. Circ Res. 1990 Oct;67(4):1040–1046. doi: 10.1161/01.res.67.4.1040. [DOI] [PubMed] [Google Scholar]
  32. Korystov Y. N., Dobrovinskaya O. R., Shaposhnikova V. V., Eidus L. Kh. Role of arachidonic acid metabolism in thymocyte apoptosis after irradiation. FEBS Lett. 1996 Jun 17;388(2-3):238–241. doi: 10.1016/0014-5793(96)00538-8. [DOI] [PubMed] [Google Scholar]
  33. Lesnefsky E. J., Slabe T. J., Stoll M. S., Minkler P. E., Hoppel C. L. Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. Am J Physiol Heart Circ Physiol. 2001 Jun;280(6):H2770–H2778. doi: 10.1152/ajpheart.2001.280.6.H2770. [DOI] [PubMed] [Google Scholar]
  34. Liu S. J., McHowat J. Stimulation of different phospholipase A2 isoforms by TNF-alpha and IL-1beta in adult rat ventricular myocytes. Am J Physiol. 1998 Oct;275(4 Pt 2):H1462–H1472. doi: 10.1152/ajpheart.1998.275.4.H1462. [DOI] [PubMed] [Google Scholar]
  35. Madesh M., Ramachandran A., Pulimood A., Vadranam M., Balasubramanian K. A. Attenuation of intestinal ischemia/reperfusion injury with sodium nitroprusside: studies on mitochondrial function and lipid changes. Biochim Biophys Acta. 2000 Feb 21;1500(2):204–216. doi: 10.1016/s0925-4439(99)00107-6. [DOI] [PubMed] [Google Scholar]
  36. Mancuso D. J., Jenkins C. M., Gross R. W. The genomic organization, complete mRNA sequence, cloning, and expression of a novel human intracellular membrane-associated calcium-independent phospholipase A(2). J Biol Chem. 2000 Apr 7;275(14):9937–9945. doi: 10.1074/jbc.275.14.9937. [DOI] [PubMed] [Google Scholar]
  37. Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986 Nov;74(5):1124–1136. doi: 10.1161/01.cir.74.5.1124. [DOI] [PubMed] [Google Scholar]
  38. Olivetti G., Quaini F., Sala R., Lagrasta C., Corradi D., Bonacina E., Gambert S. R., Cigola E., Anversa P. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol. 1996 Sep;28(9):2005–2016. doi: 10.1006/jmcc.1996.0193. [DOI] [PubMed] [Google Scholar]
  39. Pain T., Yang X. M., Critz S. D., Yue Y., Nakano A., Liu G. S., Heusch G., Cohen M. V., Downey J. M. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000 Sep 15;87(6):460–466. doi: 10.1161/01.res.87.6.460. [DOI] [PubMed] [Google Scholar]
  40. Paradies G., Petrosillo G., Pistolese M., Di Venosa N., Serena D., Ruggiero F. M. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med. 1999 Jul;27(1-2):42–50. doi: 10.1016/s0891-5849(99)00032-5. [DOI] [PubMed] [Google Scholar]
  41. Piper H. M., Sezer O., Schleyer M., Schwartz P., Hütter J. F., Spieckermann P. G. Development of ischemia-induced damage in defined mitochondrial subpopulations. J Mol Cell Cardiol. 1985 Sep;17(9):885–896. doi: 10.1016/s0022-2828(85)80102-4. [DOI] [PubMed] [Google Scholar]
  42. Prasad M. R., Popescu L. M., Moraru I. I., Liu X. K., Maity S., Engelman R. M., Das D. K. Role of phospholipases A2 and C in myocardial ischemic reperfusion injury. Am J Physiol. 1991 Mar;260(3 Pt 2):H877–H883. doi: 10.1152/ajpheart.1991.260.3.H877. [DOI] [PubMed] [Google Scholar]
  43. Sapirstein A., Spech R. A., Witzgall R., Bonventre J. V. Cytosolic phospholipase A2 (PLA2), but not secretory PLA2, potentiates hydrogen peroxide cytotoxicity in kidney epithelial cells. J Biol Chem. 1996 Aug 30;271(35):21505–21513. doi: 10.1074/jbc.271.35.21505. [DOI] [PubMed] [Google Scholar]
  44. Saraste A., Pulkki K., Kallajoki M., Henriksen K., Parvinen M., Voipio-Pulkki L. M. Apoptosis in human acute myocardial infarction. Circulation. 1997 Jan 21;95(2):320–323. doi: 10.1161/01.cir.95.2.320. [DOI] [PubMed] [Google Scholar]
  45. Shinmura K., Tang X. L., Wang Y., Xuan Y. T., Liu S. Q., Takano H., Bhatnagar A., Bolli R. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10197–10202. doi: 10.1073/pnas.97.18.10197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Storrie B., Madden E. A. Isolation of subcellular organelles. Methods Enzymol. 1990;182:203–225. doi: 10.1016/0076-6879(90)82018-w. [DOI] [PubMed] [Google Scholar]
  47. Tang J., Kriz R. W., Wolfman N., Shaffer M., Seehra J., Jones S. S. A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J Biol Chem. 1997 Mar 28;272(13):8567–8575. doi: 10.1074/jbc.272.13.8567. [DOI] [PubMed] [Google Scholar]
  48. Tsuchida A., Liu Y., Liu G. S., Cohen M. V., Downey J. M. alpha 1-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res. 1994 Sep;75(3):576–585. doi: 10.1161/01.res.75.3.576. [DOI] [PubMed] [Google Scholar]
  49. Turk J., Gross R. W., Ramanadham S. Amplification of insulin secretion by lipid messengers. Diabetes. 1993 Mar;42(3):367–374. doi: 10.2337/diab.42.3.367. [DOI] [PubMed] [Google Scholar]
  50. Voelkel-Johnson C., Thorne T. E., Laster S. M. Susceptibility to TNF in the presence of inhibitors of transcription or translation is dependent on the activity of cytosolic phospholipase A2 in human melanoma tumor cells. J Immunol. 1996 Jan 1;156(1):201–207. [PubMed] [Google Scholar]
  51. Wang S., Cone J., Liu Y. Dual roles of mitochondrial K(ATP) channels in diazoxide-mediated protection in isolated rabbit hearts. Am J Physiol Heart Circ Physiol. 2001 Jan;280(1):H246–H255. doi: 10.1152/ajpheart.2001.280.1.H246. [DOI] [PubMed] [Google Scholar]
  52. Wang S., Cone J., Liu Y. Dual roles of mitochondrial K(ATP) channels in diazoxide-mediated protection in isolated rabbit hearts. Am J Physiol Heart Circ Physiol. 2001 Jan;280(1):H246–H255. doi: 10.1152/ajpheart.2001.280.1.H246. [DOI] [PubMed] [Google Scholar]
  53. Williams S. D., Hsu F. F., Ford D. A. Electrospray ionization mass spectrometry analyses of nuclear membrane phospholipid loss after reperfusion of ischemic myocardium. J Lipid Res. 2000 Oct;41(10):1585–1595. [PubMed] [Google Scholar]
  54. Wissing D., Mouritzen H., Egeblad M., Poirier G. G., Jättelä M. Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5073–5077. doi: 10.1073/pnas.94.10.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wolf M. J., Gross R. W. Expression, purification, and kinetic characterization of a recombinant 80-kDa intracellular calcium-independent phospholipase A2. J Biol Chem. 1996 Nov 29;271(48):30879–30885. doi: 10.1074/jbc.271.48.30879. [DOI] [PubMed] [Google Scholar]
  56. Ytrehus K., Liu Y., Tsuchida A., Miura T., Liu G. S., Yang X. M., Herbert D., Cohen M. V., Downey J. M. Rat and rabbit heart infarction: effects of anesthesia, perfusate, risk zone, and method of infarct sizing. Am J Physiol. 1994 Dec;267(6 Pt 2):H2383–H2390. doi: 10.1152/ajpheart.1994.267.6.H2383. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES