Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 15;362(Pt 1):89–96. doi: 10.1042/0264-6021:3620089

Active-site mutagenesis of a Lys49-phospholipase A2: biological and membrane-disrupting activities in the absence of catalysis.

Richard J Ward 1, Lucimara Chioato 1, Arthur H C de Oliveira 1, Roberto Ruller 1, Juliana M Sá 1
PMCID: PMC1222363  PMID: 11829743

Abstract

Bothropstoxin-I (BthTx-I) is a myotoxic phospholipase A(2) variant present in the venom of Bothrops jararacussu, in which the Asp(49) residue is replaced with a lysine, which damages artificial membranes by a Ca(2+)-independent mechanism. Wild-type BthTx-I and the mutants Lys(49)-->Asp, His(48)-->Gln and Lys(122)-->Ala were expressed in Escherichia coli BL21(DE3) cells, and the hydrolytic, myotoxic and membrane-damaging activities of the recombinant proteins were compared with native BthTx-I purified from whole venom. The Ca(2+)-independent membrane-damaging and myotoxic activities of the native and wild-type recombinant BthTx-I, His(48)Gln and Lys(49)Asp mutants were similar; however, the Lys(122)Ala mutant demonstrated reduced levels of both activities. Although a low hydrolytic activity against a mixed phospholipid substrate was observed with native BthTx-I, no substrate hydrolysis was detected with the wild-type recombinant enzyme or any of the mutants. In the case of the Lys(49)Asp mutant, this demonstrates that the absence of catalytic activity in Lys(49)-PLA(2) is not a consequence of the single Asp(49)-->Lys replacement. Furthermore, these results provide unambiguous evidence that the Ca(2+)-independent membrane-damaging and myotoxic activities are maintained in the absence of hydrolysis. The evidence favours a model for a hydrolysis-independent, membrane-damaging mechanism involving an interaction of the C-terminal region of BthTx-I with the target membrane.

Full Text

The Full Text of this article is available as a PDF (201.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrião-Escarso S. H., Soares A. M., Rodrigues V. M., Angulo Y., Díaz C., Lomonte B., Gutiérrez J. M., Giglio J. R. Myotoxic phospholipases A(2) in bothrops snake venoms: effect of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu. Biochimie. 2000 Aug;82(8):755–763. doi: 10.1016/s0300-9084(00)01150-0. [DOI] [PubMed] [Google Scholar]
  2. Arni R. K., Fontes M. R., Barberato C., Gutiérrez J. M., Díaz C., Ward R. J. Crystal structure of myotoxin II, a monomeric Lys49-phospholipase A2 homologue isolated from the venom of Cerrophidion (Bothrops) godmani. Arch Biochem Biophys. 1999 Jun 15;366(2):177–182. doi: 10.1006/abbi.1999.1210. [DOI] [PubMed] [Google Scholar]
  3. Arni R. K., Ward R. J., Gutierrez J. M., Tulinsky A. Structure of a calcium-independent phospholipase-like myotoxic protein from Bothrops asper venom. Acta Crystallogr D Biol Crystallogr. 1995 May 1;51(Pt 3):311–317. doi: 10.1107/S0907444994011455. [DOI] [PubMed] [Google Scholar]
  4. Arni R. K., Ward R. J. Phospholipase A2--a structural review. Toxicon. 1996 Aug;34(8):827–841. doi: 10.1016/0041-0101(96)00036-0. [DOI] [PubMed] [Google Scholar]
  5. Calderón L., Lomonte B. Immunochemical characterization and role in toxic activities of region 115-129 of myotoxin II, a Lys49 phospholipase A2 from Bothrops asper snake venom. Arch Biochem Biophys. 1998 Oct 15;358(2):343–350. doi: 10.1006/abbi.1998.0853. [DOI] [PubMed] [Google Scholar]
  6. Cintra A. C., Marangoni S., Oliveira B., Giglio J. R. Bothropstoxin-I: amino acid sequence and function. J Protein Chem. 1993 Feb;12(1):57–64. doi: 10.1007/BF01024915. [DOI] [PubMed] [Google Scholar]
  7. Condrea E., Fletcher J. E., Rapuano B. E., Yang C. C., Rosenberg P. Dissociation of enzymatic activity from lethality and pharmacological properties by carbamylation of lysines in Naja nigricollis and Naja naja atra snake venom phospholipases A2. Toxicon. 1981;19(5):705–720. doi: 10.1016/0041-0101(81)90108-2. [DOI] [PubMed] [Google Scholar]
  8. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  9. Dhillon D. S., Condrea E., Maraganore J. M., Heinrikson R. L., Benjamin S., Rosenberg P. Comparison of enzymatic and pharmacological activities of lysine-49 and aspartate-49 phospholipases A2 from Agkistrodon piscivorus piscivorus snake venom. Biochem Pharmacol. 1987 May 15;36(10):1723–1730. doi: 10.1016/0006-2952(87)90059-1. [DOI] [PubMed] [Google Scholar]
  10. Díaz C., Gutiérrez J. M., Lomonte B., Gené J. A. The effect of myotoxins isolated from Bothrops snake venoms on multilamellar liposomes: relationship to phospholipase A2, anticoagulant and myotoxic activities. Biochim Biophys Acta. 1991 Dec 9;1070(2):455–460. doi: 10.1016/0005-2736(91)90086-n. [DOI] [PubMed] [Google Scholar]
  11. Fletcher J. E., Hubert M., Wieland S. J., Gong Q. H., Jiang M. S. Similarities and differences in mechanisms of cardiotoxins, melittin and other myotoxins. Toxicon. 1996 Nov-Dec;34(11-12):1301–1311. doi: 10.1016/s0041-0101(96)00105-5. [DOI] [PubMed] [Google Scholar]
  12. Fletcher J. E., Jiang M. S. LYS49 phospholipase A2 myotoxins lyse cell cultures by two distinct mechanisms. Toxicon. 1998 Nov;36(11):1549–1555. doi: 10.1016/s0041-0101(98)00147-0. [DOI] [PubMed] [Google Scholar]
  13. Francis B., Gutierrez J. M., Lomonte B., Kaiser I. I. Myotoxin II from Bothrops asper (Terciopelo) venom is a lysine-49 phospholipase A2. Arch Biochem Biophys. 1991 Feb 1;284(2):352–359. doi: 10.1016/0003-9861(91)90307-5. [DOI] [PubMed] [Google Scholar]
  14. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  15. Gutiérrez J. M., Lomonte B. Phospholipase A2 myotoxins from Bothrops snake venoms. Toxicon. 1995 Nov;33(11):1405–1424. doi: 10.1016/0041-0101(95)00085-z. [DOI] [PubMed] [Google Scholar]
  16. Heinrikson R. L. Dissection and sequence analysis of phospholipases A2. Methods Enzymol. 1991;197:201–214. doi: 10.1016/0076-6879(91)97146-p. [DOI] [PubMed] [Google Scholar]
  17. Holland D. R., Clancy L. L., Muchmore S. W., Ryde T. J., Einspahr H. M., Finzel B. C., Heinrikson R. L., Watenpaugh K. D. The crystal structure of a lysine 49 phospholipase A2 from the venom of the cottonmouth snake at 2.0-A resolution. J Biol Chem. 1990 Oct 15;265(29):17649–17656. doi: 10.2210/pdb1ppa/pdb. [DOI] [PubMed] [Google Scholar]
  18. Homsi-Brandeburgo M. I., Queiroz L. S., Santo-Neto H., Rodrigues-Simioni L., Giglio J. R. Fractionation of Bothrops jararacussu snake venom: partial chemical characterization and biological activity of bothropstoxin. Toxicon. 1988;26(7):615–627. doi: 10.1016/0041-0101(88)90244-9. [DOI] [PubMed] [Google Scholar]
  19. Janssen M. J., van de Wiel W. A., Beiboer S. H., van Kampen M. D., Verheij H. M., Slotboom A. J., Egmond M. R. Catalytic role of the active site histidine of porcine pancreatic phospholipase A2 probed by the variants H48Q, H48N and H48K. Protein Eng. 1999 Jun;12(6):497–503. doi: 10.1093/protein/12.6.497. [DOI] [PubMed] [Google Scholar]
  20. Kinkaid A. R., Wilton D. C. Enhanced hydrolysis of phosphatidylcholine by human group II non-pancreatic secreted phospholipase A2 as a result of interfacial activation by specific anions. Potential role of cholesterol sulphate. Biochem J. 1995 Jun 1;308(Pt 2):507–512. doi: 10.1042/bj3080507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee W. H., da Silva Giotto M. T., Marangoni S., Toyama M. H., Polikarpov I., Garratt R. C. Structural basis for low catalytic activity in Lys49 phospholipases A2--a hypothesis: the crystal structure of piratoxin II complexed to fatty acid. Biochemistry. 2001 Jan 9;40(1):28–36. doi: 10.1021/bi0010470. [DOI] [PubMed] [Google Scholar]
  22. Li Y., Yu B. Z., Zhu H., Jain M. K., Tsai M. D. Phospholipase A2 engineering. Structural and functional roles of the highly conserved active site residue aspartate-49. Biochemistry. 1994 Dec 13;33(49):14714–14722. doi: 10.1021/bi00253a009. [DOI] [PubMed] [Google Scholar]
  23. Lomonte B., Pizarro-Cerdá J., Angulo Y., Gorvel J. P., Moreno E. Tyr-->Trp-substituted peptide 115-129 of a Lys49 phospholipase A(2) expresses enhanced membrane-damaging activities and reproduces its in vivo myotoxic effect. Biochim Biophys Acta. 1999 Nov 9;1461(1):19–26. doi: 10.1016/s0005-2736(99)00143-1. [DOI] [PubMed] [Google Scholar]
  24. Lôbo de Araújo A., Radvanyi F. Determination of phospholipase A2 activity by a colorimetric assay using a pH indicator. Toxicon. 1987;25(11):1181–1188. doi: 10.1016/0041-0101(87)90136-x. [DOI] [PubMed] [Google Scholar]
  25. Mancin A. C., Soares A. M., Giglio C. A., Andrião-Escarso S. H., Vieira C. A., Giglio J. R. The histamine releasers crotamine, protamine and compound 48/80 activate specific proteases and phospholipases A2. Biochem Mol Biol Int. 1997 Sep;42(6):1171–1177. doi: 10.1080/15216549700203641. [DOI] [PubMed] [Google Scholar]
  26. Maraganore J. M., Heinrikson R. L. The lysine-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. Relation of structure and function to other phospholipases A2. J Biol Chem. 1986 Apr 15;261(11):4797–4804. [PubMed] [Google Scholar]
  27. Maraganore J. M., Joseph M., Bailey M. C. Purification and characterization of trichosanthin. Homology to the ricin A chain and implications as to mechanism of abortifacient activity. J Biol Chem. 1987 Aug 25;262(24):11628–11633. [PubMed] [Google Scholar]
  28. Maraganore J. M., Merutka G., Cho W., Welches W., Kézdy F. J., Heinrikson R. L. A new class of phospholipases A2 with lysine in place of aspartate 49. Functional consequences for calcium and substrate binding. J Biol Chem. 1984 Nov 25;259(22):13839–13843. [PubMed] [Google Scholar]
  29. Nelson R. M., Long G. L. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal Biochem. 1989 Jul;180(1):147–151. doi: 10.1016/0003-2697(89)90103-6. [DOI] [PubMed] [Google Scholar]
  30. Ownby C. L., Selistre de Araujo H. S., White S. P., Fletcher J. E. Lysine 49 phospholipase A2 proteins. Toxicon. 1999 Mar;37(3):411–445. doi: 10.1016/s0041-0101(98)00188-3. [DOI] [PubMed] [Google Scholar]
  31. Pedersen J. Z., Lomonte B., Massoud R., Gubensek F., Gutiérrez J. M., Rufini S. Autocatalytic acylation of phospholipase-like myotoxins. Biochemistry. 1995 Apr 11;34(14):4670–4675. doi: 10.1021/bi00014a021. [DOI] [PubMed] [Google Scholar]
  32. Pedersen J. Z., de Arcuri B. F., Morero R. D., Rufini S. Phospholipase-like myotoxins induce rapid membrane leakage of non-hydrolyzable ether-lipid liposomes. Biochim Biophys Acta. 1994 Feb 23;1190(1):177–180. doi: 10.1016/0005-2736(94)90049-3. [DOI] [PubMed] [Google Scholar]
  33. Rufini S., Cesaroni P., Desideri A., Farias R., Gubensek F., Gutiérrez J. M., Luly P., Massoud R., Morero R., Pedersen J. Z. Calcium ion independent membrane leakage induced by phospholipase-like myotoxins. Biochemistry. 1992 Dec 15;31(49):12424–12430. doi: 10.1021/bi00164a018. [DOI] [PubMed] [Google Scholar]
  34. Scott D. L., Achari A., Vidal J. C., Sigler P. B. Crystallographic and biochemical studies of the (inactive) Lys-49 phospholipase A2 from the venom of Agkistridon piscivorus piscivorus. J Biol Chem. 1992 Nov 5;267(31):22645–22657. [PubMed] [Google Scholar]
  35. Scott D. L., Sigler P. B. Structure and catalytic mechanism of secretory phospholipases A2. Adv Protein Chem. 1994;45:53–88. doi: 10.1016/s0065-3233(08)60638-5. [DOI] [PubMed] [Google Scholar]
  36. Scott D. L., White S. P., Otwinowski Z., Yuan W., Gelb M. H., Sigler P. B. Interfacial catalysis: the mechanism of phospholipase A2. Science. 1990 Dec 14;250(4987):1541–1546. doi: 10.1126/science.2274785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sekar K., Biswas R., Li Y., Tsai M., Sundaralingam M. Structures of the catalytic site mutants D99A and H48Q and the calcium-loop mutant D49E of phospholipase A2. Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):443–447. doi: 10.1107/s0907444998013699. [DOI] [PubMed] [Google Scholar]
  38. Shimohigashi Y., Tani A., Matsumoto H., Nakashima K., Yamaguchi Y. Lysine-49-phospholipases A2 from Trimeresurus flavoviridis venom are membrane-acting enzymes. J Biochem. 1995 Nov;118(5):1037–1044. doi: 10.1093/jb/118.5.1037. [DOI] [PubMed] [Google Scholar]
  39. Six D. A., Dennis E. A. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta. 2000 Oct 31;1488(1-2):1–19. doi: 10.1016/s1388-1981(00)00105-0. [DOI] [PubMed] [Google Scholar]
  40. Soares A. M., Andrião-Escarso S. H., Bortoleto R. K., Rodrigues-Simioni L., Arni R. K., Ward R. J., Gutiérrez J. M., Giglio J. R. Dissociation of enzymatic and pharmacological properties of piratoxins-I and -III, two myotoxic phospholipases A2 from Bothrops pirajai snake venom. Arch Biochem Biophys. 2001 Mar 15;387(2):188–196. doi: 10.1006/abbi.2000.2244. [DOI] [PubMed] [Google Scholar]
  41. Soares A. M., Guerra-Sá R., Borja-Oliveira C. R., Rodrigues V. M., Rodrigues-Simioni L., Rodrigues V., Fontes M. R., Lomonte B., Gutiérrez J. M., Giglio J. R. Structural and functional characterization of BnSP-7, a Lys49 myotoxic phospholipase A(2) homologue from Bothrops neuwiedi pauloensis venom. Arch Biochem Biophys. 2000 Jun 15;378(2):201–209. doi: 10.1006/abbi.2000.1790. [DOI] [PubMed] [Google Scholar]
  42. Toyama M. H., Soares A. M., Vieira C. A., Novello J. C., Oliveira B., Giglio J. R., Marangoni S. Amino acid sequence of piratoxin-I, a myotoxin from Bothrops pirajai snake venom, and its biological activity after alkylation with p-bromophenacyl bromide. J Protein Chem. 1998 Oct;17(7):713–718. doi: 10.1007/BF02780974. [DOI] [PubMed] [Google Scholar]
  43. VAN DEENENL, DE HAAS G. H. THE SUBSTRATE SPECIFICITY OF PHOSPHOLIPASE A. Biochim Biophys Acta. 1963 Oct 22;70:538–553. doi: 10.1016/0006-3002(63)90792-3. [DOI] [PubMed] [Google Scholar]
  44. Verheij H. M., Volwerk J. J., Jansen E. H., Puyk W. C., Dijkstra B. W., Drenth J., de Haas G. H. Methylation of histidine-48 in pancreatic phospholipase A2. Role of histidine and calcium ion in the catalytic mechanism. Biochemistry. 1980 Feb 19;19(4):743–750. doi: 10.1021/bi00545a021. [DOI] [PubMed] [Google Scholar]
  45. Ward R. J., Alves A. R., Ruggiero Neto J., Arni R. K., Casari G. A SequenceSpace analysis of Lys49 phopholipases A2: clues towards identification of residues involved in a novel mechanism of membrane damage and in myotoxicity. Protein Eng. 1998 Apr;11(4):285–294. doi: 10.1093/protein/11.4.285. [DOI] [PubMed] [Google Scholar]
  46. Ward R. J., Monesi N., Arni R. K., Larson R. E., Paço-Larson M. L. Sequence of a cDNA encoding bothropstoxin I, a myotoxin from the venom of Bothrops jararacussu. Gene. 1995 Apr 24;156(2):305–306. doi: 10.1016/0378-1119(95)00099-r. [DOI] [PubMed] [Google Scholar]
  47. Ward R. J., de Oliveira A. H., Bortoleto R. K., Rosa J. C., Faça V. M., Greene L. J. Refolding and purification of Bothropstoxin-I, a Lys49-phospholipase A2 homologue, expressed as inclusion bodies in Escherichia coli. Protein Expr Purif. 2001 Feb;21(1):134–140. doi: 10.1006/prep.2000.1353. [DOI] [PubMed] [Google Scholar]
  48. Yamaguchi Y., Shimohigashi Y., Chiwata T., Tani A., Chijiwa T., Lomonte B., Ohno M. Lys-49-phospholipases A2 as active enzyme for beta-arachidonoyl phospholipid bilayer membranes. Biochem Mol Biol Int. 1997 Sep;43(1):19–26. doi: 10.1080/15216549700203771. [DOI] [PubMed] [Google Scholar]
  49. Yu B. Z., Rogers J., Tsai M. D., Pidgeon C., Jain M. K. Contributions of residues of pancreatic phospholipase A2 to interfacial binding, catalysis, and activation. Biochemistry. 1999 Apr 13;38(15):4875–4884. doi: 10.1021/bi982215f. [DOI] [PubMed] [Google Scholar]
  50. da Silva Giotto M. T., Garratt R. C., Oliva G., Mascarenhas Y. P., Giglio J. R., Cintra A. C., de Azevedo W. F., Jr, Arni R. K., Ward R. J. Crystallographic and spectroscopic characterization of a molecular hinge: conformational changes in bothropstoxin I, a dimeric Lys49-phospholipase A2 homologue. Proteins. 1998 Mar 1;30(4):442–454. doi: 10.1002/(sici)1097-0134(19980301)30:4<442::aid-prot11>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  51. de Araujo H. S., White S. P., Ownby C. L. Sequence analysis of Lys49 phospholipase A2 myotoxins: a highly conserved class of proteins. Toxicon. 1996 Nov-Dec;34(11-12):1237–1242. doi: 10.1016/s0041-0101(96)00111-0. [DOI] [PubMed] [Google Scholar]
  52. de Azevedo W. F., Jr, Ward R. J., Canduri F., Soares A., Giglio J. R., Arni R. K. Crystal structure of piratoxin-I: a calcium-independent, myotoxic phospholipase A2-homologue from Bothrops pirajai venom. Toxicon. 1998 Oct;36(10):1395–1406. doi: 10.1016/s0041-0101(98)00017-8. [DOI] [PubMed] [Google Scholar]
  53. de Azevedo W. F., Jr, Ward R. J., Gutiérrez J. M., Arni R. K. Structure of a Lys49-phospholipase A2 homologue isolated from the venom of Bothrops nummifer (jumping viper). Toxicon. 1999 Feb;37(2):371–384. doi: 10.1016/s0041-0101(98)00189-5. [DOI] [PubMed] [Google Scholar]
  54. de Oliveira A. H., Giglio J. R., Andrião-Escarso S. H., Ito A. S., Ward R. J. A pH-induced dissociation of the dimeric form of a lysine 49-phospholipase A2 abolishes Ca2+-independent membrane damaging activity. Biochemistry. 2001 Jun 12;40(23):6912–6920. doi: 10.1021/bi0026728. [DOI] [PubMed] [Google Scholar]
  55. de Oliveira A. H., Giglio J. R., Andrião-Escarso S. H., Ward R. J. The effect of resonance energy homotransfer on the intrinsic tryptophan fluorescence emission of the bothropstoxin-I dimer. Biochem Biophys Res Commun. 2001 Jun 22;284(4):1011–1015. doi: 10.1006/bbrc.2001.5073. [DOI] [PubMed] [Google Scholar]
  56. van den Bergh C. J., Slotboom A. J., Verheij H. M., de Haas G. H. The role of Asp-49 and other conserved amino acids in phospholipases A2 and their importance for enzymatic activity. J Cell Biochem. 1989 Apr;39(4):379–390. doi: 10.1002/jcb.240390404. [DOI] [PubMed] [Google Scholar]
  57. van den Bergh C. J., Slotboom A. J., Verheij H. M., de Haas G. H. The role of aspartic acid-49 in the active site of phospholipase A2. A site-specific mutagenesis study of porcine pancreatic phospholipase A2 and the rationale of the enzymatic activity of [lysine49]phospholipase A2 from Agkistrodon piscivorus piscivorus' venom. Eur J Biochem. 1988 Sep 15;176(2):353–357. doi: 10.1111/j.1432-1033.1988.tb14288.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES