Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 15;362(Pt 1):97–104. doi: 10.1042/0264-6021:3620097

Regulation of phosphatidylcholine and phosphatidylethanolamine synthesis in rat hepatocytes by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR).

Martin Houweling 1, Wil Klein 1, Math J H Geelen 1
PMCID: PMC1222364  PMID: 11829744

Abstract

The present study was undertaken to study the role of AMP-activated kinase (AMPK) in the biosynthesis of two major membrane phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Incubation of rat hepatocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an activator of AMPK, produced dose-dependent inhibition of the incorporation of [(3)H]choline and [(3)H]ethanolamine into PC and PE, respectively. Determination of the cellular uptake of choline and ethanolamine showed that the reduced synthesis of PC and PE did not result from impaired uptake of these two precursors. The decreased synthesis of PC was not mirrored by a reduction in the activities of the enzymes of the CDP-choline pathway. The diminution of PE biosynthesis, however, was paralleled by a depressed activity of CTP:phosphoethanolamine cytidylyltransferase (ET), the pace-setting enzyme of the CDP-ethanolamine pathway. AICAR treatment of hepatocytes stimulated the conversion of choline into betaine, indicating that reduced PC synthesis most probably resulted from a decrease in the availability of choline. In addition, AICAR induced a 50% reduction in the cellular level of diacylglycerols, which may further impair the synthesis of PC and PE. The results thus indicate that AICAR inhibits the biosynthesis of PC and PE and that the effect is exerted at different sites in the two pathways. Increased oxidation of choline to betaine is the main target of AICAR in the PC pathway, whereas inhibition of ET activity is the locus of AICAR action in the PE pathway.

Full Text

The Full Text of this article is available as a PDF (176.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur G., Page L. Synthesis of phosphatidylethanolamine and ethanolamine plasmalogen by the CDP-ethanolamine and decarboxylase pathways in rat heart, kidney and liver. Biochem J. 1991 Jan 1;273(Pt 1):121–125. doi: 10.1042/bj2730121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barak A. J., Tuma D. J. Betaine, metabolic by-product or vital methylating agent? Life Sci. 1983 Feb 14;32(7):771–774. doi: 10.1016/0024-3205(83)90311-9. [DOI] [PubMed] [Google Scholar]
  3. Beynen A. C., Vaartjes W. J., Geelen M. J. Opposite effects of insulin and glucagon in acute hormonal control of hepatic lipogenesis. Diabetes. 1979 Sep;28(9):828–835. doi: 10.2337/diab.28.9.828. [DOI] [PubMed] [Google Scholar]
  4. Bijleveld C., Geelen M. J. Measurement of acetyl-CoA carboxylase activity in isolated hepatocytes. Biochim Biophys Acta. 1987 Apr 24;918(3):274–283. doi: 10.1016/0005-2760(87)90231-1. [DOI] [PubMed] [Google Scholar]
  5. Bladergroen B. A., Geelen M. J., Reddy A. C., Declercq P. E., Van Golde L. M. Channelling of intermediates in the biosynthesis of phosphatidylcholine and phosphatidylethanolamine in mammalian cells. Biochem J. 1998 Sep 15;334(Pt 3):511–517. doi: 10.1042/bj3340511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chu A. J., Lee J. M. Lidocaine inhibits choline uptake and phosphatidylcholine biosynthesis in human leukemic monocyte-like U937 cells. Cell Biochem Funct. 1994 Jun;12(2):89–98. doi: 10.1002/cbf.290120203. [DOI] [PubMed] [Google Scholar]
  7. Coleman R. A., Haynes E. B. Selective changes in microsomal enzymes of triacylglycerol and phosphatidylcholine synthesis in fetal and postnatal rat liver. Induction of microsomal sn-glycerol 3-phosphate and dihydroxyacetonephosphate acyltransferase activities. J Biol Chem. 1983 Jan 10;258(1):450–456. [PubMed] [Google Scholar]
  8. Cornell R. B., Kalmar G. B., Kay R. J., Johnson M. A., Sanghera J. S., Pelech S. L. Functions of the C-terminal domain of CTP: phosphocholine cytidylyltransferase. Effects of C-terminal deletions on enzyme activity, intracellular localization and phosphorylation potential. Biochem J. 1995 Sep 1;310(Pt 2):699–708. doi: 10.1042/bj3100699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cornell R. B., Northwood I. C. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem Sci. 2000 Sep;25(9):441–447. doi: 10.1016/s0968-0004(00)01625-x. [DOI] [PubMed] [Google Scholar]
  10. Geelen M. J., Bijleveld C., Velasco G., Wanders R. J., Guzmán M. Studies on the intracellular localization of acetyl-CoA carboxylase. Biochem Biophys Res Commun. 1997 Apr 7;233(1):253–257. doi: 10.1006/bbrc.1997.6437. [DOI] [PubMed] [Google Scholar]
  11. George T. P., Morash S. C., Cook H. W., Byers D. M., Palmer F. B., Spence M. W. Phosphatidylcholine biosynthesis in cultured glioma cells: evidence for channeling of intermediates. Biochim Biophys Acta. 1989 Aug 22;1004(3):283–291. doi: 10.1016/0005-2760(89)90075-1. [DOI] [PubMed] [Google Scholar]
  12. Goldfine H. Use of a filter-paper disk assay in the measurement of lipid biosynthesis. J Lipid Res. 1966 Jan;7(1):146–149. [PubMed] [Google Scholar]
  13. Groener J. E., Klein W., Van Golde L. M. The effect of fasting and refeeding on the composition and synthesis of triacylglycerols, phosphatidylcholines, and phosphatidylethanolamines in rat liver. Arch Biochem Biophys. 1979 Nov;198(1):287–295. doi: 10.1016/0003-9861(79)90421-1. [DOI] [PubMed] [Google Scholar]
  14. HEROUX O. Histological evidence for cellular adaptation to non-freezing cold injury. Can J Biochem Physiol. 1959 Jul;37(7):811–819. [PubMed] [Google Scholar]
  15. Hardie D. G., Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997 Jun 1;246(2):259–273. doi: 10.1111/j.1432-1033.1997.00259.x. [DOI] [PubMed] [Google Scholar]
  16. Hardie D. G. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta. 1992 Feb 12;1123(3):231–238. doi: 10.1016/0005-2760(92)90001-c. [DOI] [PubMed] [Google Scholar]
  17. Henin N., Vincent M. F., Van den Berghe G. Stimulation of rat liver AMP-activated protein kinase by AMP analogues. Biochim Biophys Acta. 1996 Jun 4;1290(2):197–203. doi: 10.1016/0304-4165(96)00021-9. [DOI] [PubMed] [Google Scholar]
  18. Hjelmstad R. H., Bell R. M. Molecular insights into enzymes of membrane bilayer assembly. Biochemistry. 1991 Feb 19;30(7):1731–1740. doi: 10.1021/bi00221a001. [DOI] [PubMed] [Google Scholar]
  19. Houweling M., Jamil H., Hatch G. M., Vance D. E. Dephosphorylation of CTP-phosphocholine cytidylyltransferase is not required for binding to membranes. J Biol Chem. 1994 Mar 11;269(10):7544–7551. [PubMed] [Google Scholar]
  20. Jamil H., Vance D. E. Substrate specificity of CTP:phosphocholine cytidylyltransferase. Biochim Biophys Acta. 1991 Nov 27;1086(3):335–339. doi: 10.1016/0005-2760(91)90178-k. [DOI] [PubMed] [Google Scholar]
  21. Jamil H., Yao Z. M., Vance D. E. Feedback regulation of CTP:phosphocholine cytidylyltransferase translocation between cytosol and endoplasmic reticulum by phosphatidylcholine. J Biol Chem. 1990 Mar 15;265(8):4332–4339. [PubMed] [Google Scholar]
  22. Janski A. M., Cornell N. W. Subcellular distribution of enzymes determined by rapid digitonin fractionation of isolated hepatocytes. Biochem J. 1980 Feb 15;186(2):423–429. doi: 10.1042/bj1860423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kent C. CTP:phosphocholine cytidylyltransferase. Biochim Biophys Acta. 1997 Sep 4;1348(1-2):79–90. doi: 10.1016/s0005-2760(97)00112-4. [DOI] [PubMed] [Google Scholar]
  24. Kent C. Eukaryotic phospholipid biosynthesis. Annu Rev Biochem. 1995;64:315–343. doi: 10.1146/annurev.bi.64.070195.001531. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. MacDonald J. I., Kent C. Identification of phosphorylation sites in rat liver CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1994 Apr 8;269(14):10529–10537. [PubMed] [Google Scholar]
  27. McMaster C. R., Bell R. M. CDP-choline:1,2-diacylglycerol cholinephosphotransferase. Biochim Biophys Acta. 1997 Sep 4;1348(1-2):100–110. doi: 10.1016/s0005-2760(97)00097-0. [DOI] [PubMed] [Google Scholar]
  28. McMaster C. R., Bell R. M. CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase. Biochim Biophys Acta. 1997 Sep 4;1348(1-2):117–123. doi: 10.1016/s0005-2760(97)00098-2. [DOI] [PubMed] [Google Scholar]
  29. Muoio D. M., Seefeld K., Witters L. A., Coleman R. A. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J. 1999 Mar 15;338(Pt 3):783–791. [PMC free article] [PubMed] [Google Scholar]
  30. Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
  31. Shin D. H., Paulauskis J. D., Moustaïd N., Sul H. S. Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol-3-phosphate acyltransferase. J Biol Chem. 1991 Dec 15;266(35):23834–23839. [PubMed] [Google Scholar]
  32. Tijburg L. B., Geelen M. J., Van Golde L. M. Biosynthesis of phosphatidylethanolamine via the CDP-ethanolamine route is an important pathway in isolated rat hepatocytes. Biochem Biophys Res Commun. 1989 May 15;160(3):1275–1280. doi: 10.1016/s0006-291x(89)80141-x. [DOI] [PubMed] [Google Scholar]
  33. Tijburg L. B., Vermeulen P. S., van Golde L. M. Ethanolamine-phosphate cytidylyltransferase. Methods Enzymol. 1992;209:258–263. doi: 10.1016/0076-6879(92)09032-x. [DOI] [PubMed] [Google Scholar]
  34. Tronchère H., Tercé F., Record M., Chap H. Phorbol myristate acetate stimulates [3H]choline incorporation into phosphatidylcholine independently of the 'de novo' pathway in Krebs-II ascitic cells: a unique effect of phorbol ester on choline uptake. Biochem J. 1993 Aug 1;293(Pt 3):739–744. doi: 10.1042/bj2930739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vermeulen P. S., Tijburg L. B., Geelen M. J., van Golde L. M. Immunological characterization, lipid dependence, and subcellular localization of CTP:phosphoethanolamine cytidylyltransferase purified from rat liver. Comparison with CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1993 Apr 5;268(10):7458–7464. [PubMed] [Google Scholar]
  36. Wang Y., MacDonald J. I., Kent C. Regulation of CTP:phosphocholine cytidylyltransferase in HeLa cells. Effect of oleate on phosphorylation and intracellular localization. J Biol Chem. 1993 Mar 15;268(8):5512–5518. [PubMed] [Google Scholar]
  37. Weinhold P. A., Rethy V. B. The separation, purification, and characterization of ethanolamine kinase and choline kinase from rat liver. Biochemistry. 1974 Dec 3;13(25):5135–5141. doi: 10.1021/bi00722a013. [DOI] [PubMed] [Google Scholar]
  38. Wieprecht M., Wieder T., Paul C., Geilen C. C., Orfanos C. E. Evidence for phosphorylation of CTP:phosphocholine cytidylyltransferase by multiple proline-directed protein kinases. J Biol Chem. 1996 Apr 26;271(17):9955–9961. doi: 10.1074/jbc.271.17.9955. [DOI] [PubMed] [Google Scholar]
  39. Yao Z. M., Jamil H., Vance D. E. Choline deficiency causes translocation of CTP:phosphocholine cytidylyltransferase from cytosol to endoplasmic reticulum in rat liver. J Biol Chem. 1990 Mar 15;265(8):4326–4331. [PubMed] [Google Scholar]
  40. Zeisel S. H., Wurtman R. J. Developmental changes in rat blood choline concentration. Biochem J. 1981 Sep 15;198(3):565–570. doi: 10.1042/bj1980565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van Hellemond J. J., Slot J. W., Geelen M. J., van Golde L. M., Vermeulen P. S. Ultrastructural localization of CTP:phosphoethanolamine cytidylyltransferase in rat liver. J Biol Chem. 1994 Jun 3;269(22):15415–15418. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES