Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 15;362(Pt 1):125–130. doi: 10.1042/0264-6021:3620125

CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues.

Eduardo N Chini 1, Claudia C S Chini 1, Ichiro Kato 1, Shin Takasawa 1, Hiroshi Okamoto 1
PMCID: PMC1222368  PMID: 11829748

Abstract

In the present study, we have determined the role of the enzyme CD38 upon the synthesis of the Ca(2+)-releasing nucleotide nicotinic acid-adenine dinucleotide phosphate (NAADP). In rat tissues, we observed that the capacity for NAADP synthesis could be co-immunoprecipitated with CD38 using an anti-CD38 antibody. Furthermore, we observed that several tissues from CD38 knockout mice had no capacity for the synthesis of this nucleotide. In addition, CD38 was also identified as the major enzyme responsible for the synthesis of the second messenger cyclic ADP-ribose. These observations lead to the conclusion that CD38 is the major enzyme responsible for the synthesis of NAADP and cyclic ADP-ribose, and raises the possibility of a new signalling pathway where two different Ca(2+)-releasing nucleotides are synthesized by the same enzyme.

Full Text

The Full Text of this article is available as a PDF (124.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarhus R., Graeff R. M., Dickey D. M., Walseth T. F., Lee H. C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995 Dec 22;270(51):30327–30333. doi: 10.1074/jbc.270.51.30327. [DOI] [PubMed] [Google Scholar]
  2. Bak J., White P., Timár G., Missiaen L., Genazzani A. A., Galione A. Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes. Curr Biol. 1999 Jul 15;9(14):751–754. doi: 10.1016/s0960-9822(99)80335-2. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Cell signalling. A tale of two messengers. Nature. 1993 Sep 30;365(6445):388–389. doi: 10.1038/365388a0. [DOI] [PubMed] [Google Scholar]
  4. Cancela J. M., Churchill G. C., Galione A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature. 1999 Mar 4;398(6722):74–76. doi: 10.1038/18032. [DOI] [PubMed] [Google Scholar]
  5. Cancela J. M., Gerasimenko O. V., Gerasimenko J. V., Tepikin A. V., Petersen O. H. Two different but converging messenger pathways to intracellular Ca(2+) release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate. EMBO J. 2000 Jun 1;19(11):2549–2557. doi: 10.1093/emboj/19.11.2549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng J., Yusufi A. N., Thompson M. A., Chini E. N., Grande J. P. Nicotinic acid adenine dinucleotide phosphate: a new Ca2+ releasing agent in kidney. J Am Soc Nephrol. 2001 Jan;12(1):54–60. doi: 10.1681/ASN.V12154. [DOI] [PubMed] [Google Scholar]
  7. Chini E. N., Beers K. W., Dousa T. P. Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs. J Biol Chem. 1995 Feb 17;270(7):3216–3223. doi: 10.1074/jbc.270.7.3216. [DOI] [PubMed] [Google Scholar]
  8. Chini E. N., Dousa T. P. Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate (NAADP), a Ca(2+)-releasing agonist, in rat tissues. Biochem Biophys Res Commun. 1995 Apr 6;209(1):167–174. doi: 10.1006/bbrc.1995.1485. [DOI] [PubMed] [Google Scholar]
  9. Chini E. N., Dousa T. P. Nicotinate-adenine dinucleotide phosphate-induced Ca(2+)-release does not behave as a Ca(2+)-induced Ca(2+)-release system. Biochem J. 1996 Jun 15;316(Pt 3):709–711. doi: 10.1042/bj3160709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chini E. N., Dousa T. P. Palmitoyl-CoA potentiates the Ca2+ release elicited by cyclic ADP-ribose. Am J Physiol. 1996 Feb;270(2 Pt 1):C530–C537. doi: 10.1152/ajpcell.1996.270.2.C530. [DOI] [PubMed] [Google Scholar]
  11. Chini E. N., Liang M., Dousa T. P. Differential effect of pH upon cyclic-ADP-ribose and nicotinate-adenine dinucleotide phosphate-induced Ca2+ release systems. Biochem J. 1998 Nov 1;335(Pt 3):499–504. doi: 10.1042/bj3350499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cockayne D. A., Muchamuel T., Grimaldi J. C., Muller-Steffner H., Randall T. D., Lund F. E., Murray R., Schuber F., Howard M. C. Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses. Blood. 1998 Aug 15;92(4):1324–1333. [PubMed] [Google Scholar]
  13. Dousa T. P., Chini E. N., Beers K. W. Adenine nucleotide diphosphates: emerging second messengers acting via intracellular Ca2+ release. Am J Physiol. 1996 Oct;271(4 Pt 1):C1007–C1024. doi: 10.1152/ajpcell.1996.271.4.C1007. [DOI] [PubMed] [Google Scholar]
  14. Fukushi Y., Kato I., Takasawa S., Sasaki T., Ong B. H., Sato M., Ohsaga A., Sato K., Shirato K., Okamoto H. Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca(2+) signaling using CD38 knockout mice. J Biol Chem. 2001 Jan 5;276(1):649–655. doi: 10.1074/jbc.M004469200. [DOI] [PubMed] [Google Scholar]
  15. Galione A., Patel S., Churchill G. C. NAADP-induced calcium release in sea urchin eggs. Biol Cell. 2000 Jul;92(3-4):197–204. doi: 10.1016/s0248-4900(00)01070-4. [DOI] [PubMed] [Google Scholar]
  16. Galione A., White A. Ca2+ release induced by cyclic ADP-ribose. Trends Cell Biol. 1994 Dec;4(12):431–436. doi: 10.1016/0962-8924(94)90104-x. [DOI] [PubMed] [Google Scholar]
  17. Genazzani A. A., Empson R. M., Galione A. Unique inactivation properties of NAADP-sensitive Ca2+ release. J Biol Chem. 1996 May 17;271(20):11599–11602. doi: 10.1074/jbc.271.20.11599. [DOI] [PubMed] [Google Scholar]
  18. Genazzani A. A., Galione A. A Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol Sci. 1997 Apr;18(4):108–110. doi: 10.1016/s0165-6147(96)01036-x. [DOI] [PubMed] [Google Scholar]
  19. Genazzani A. A., Galione A. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J. 1996 May 1;315(Pt 3):721–725. doi: 10.1042/bj3150721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
  21. Kato I., Yamamoto Y., Fujimura M., Noguchi N., Takasawa S., Okamoto H. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion. J Biol Chem. 1999 Jan 22;274(4):1869–1872. doi: 10.1074/jbc.274.4.1869. [DOI] [PubMed] [Google Scholar]
  22. Khoo K. M., Han M. K., Park J. B., Chae S. W., Kim U. H., Lee H. C., Bay B. H., Chang C. F. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J Biol Chem. 2000 Aug 11;275(32):24807–24817. doi: 10.1074/jbc.M908231199. [DOI] [PubMed] [Google Scholar]
  23. Kontani K., Nishina H., Ohoka Y., Takahashi K., Katada T. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38. J Biol Chem. 1993 Aug 15;268(23):16895–16898. [PubMed] [Google Scholar]
  24. Lee H. C. A unified mechanism of enzymatic synthesis of two calcium messengers: cyclic ADP-ribose and NAADP. Biol Chem. 1999 Jul-Aug;380(7-8):785–793. doi: 10.1515/BC.1999.098. [DOI] [PubMed] [Google Scholar]
  25. Lee H. C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem. 1995 Feb 3;270(5):2152–2157. doi: 10.1074/jbc.270.5.2152. [DOI] [PubMed] [Google Scholar]
  26. Liang M., Chini E. N., Cheng J., Dousa T. P. Synthesis of NAADP and cADPR in mitochondria. Arch Biochem Biophys. 1999 Nov 15;371(2):317–325. doi: 10.1006/abbi.1999.1463. [DOI] [PubMed] [Google Scholar]
  27. Patel S., Churchill G. C., Sharp T., Galione A. Widespread distribution of binding sites for the novel Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate, in the brain. J Biol Chem. 2000 Nov 24;275(47):36495–36497. doi: 10.1074/jbc.C000458200. [DOI] [PubMed] [Google Scholar]
  28. Perez-Terzic C. M., Chini E. N., Shen S. S., Dousa T. P., Clapham D. E. Ca2+ release triggered by nicotinate adenine dinucleotide phosphate in intact sea urchin eggs. Biochem J. 1995 Dec 15;312(Pt 3):955–959. doi: 10.1042/bj3120955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rusinko N., Lee H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jul 15;264(20):11725–11731. [PubMed] [Google Scholar]
  30. Takasawa S., Tohgo A., Noguchi N., Koguma T., Nata K., Sugimoto T., Yonekura H., Okamoto H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem. 1993 Dec 15;268(35):26052–26054. [PubMed] [Google Scholar]
  31. Yamada M., Mizuguchi M., Otsuka N., Ikeda K., Takahashi H. Ultrastructural localization of CD38 immunoreactivity in rat brain. Brain Res. 1997 May 9;756(1-2):52–60. doi: 10.1016/s0006-8993(97)00117-0. [DOI] [PubMed] [Google Scholar]
  32. Yusufi A. N., Cheng J., Thompson M. A., Chini E. N., Grande J. P. Nicotinic acid-adenine dinucleotide phosphate (NAADP) elicits specific microsomal Ca2+ release from mammalian cells. Biochem J. 2001 Feb 1;353(Pt 3):531–536. doi: 10.1042/0264-6021:3530531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. de Toledo F. G., Cheng J., Liang M., Chini E. N., Dousa T. P. ADP-Ribosyl cyclase in rat vascular smooth muscle cells: properties and regulation. Circ Res. 2000 Jun 9;86(11):1153–1159. doi: 10.1161/01.res.86.11.1153. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES