Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 15;362(Pt 1):183–189. doi: 10.1042/0264-6021:3620183

Re-evaluation of primary structure, topology, and localization of Scamper, a putative intracellular Ca2+ channel activated by sphingosylphosphocholine.

Raphaela Schnurbus 1, Davide de Pietri Tonelli 1, Fabio Grohovaz 1, Daniele Zacchetti 1
PMCID: PMC1222375  PMID: 11829755

Abstract

Naturally occurring sphingoid molecules control vital functions of the cell through their interaction with specific receptors. Proliferation, differentiation and programmed death result in fact from a fine balance of signals, among which sphingosine and structurally related molecules play fundamental roles, acting as either first or second messengers. The corresponding receptors need to be identified in order that the role of sphingoid molecules can be established. Among them, several G-protein-coupled receptors specific for sphingosine 1-phosphate, sphingosylphosphocholine, or both, have already been investigated. In contrast, the identification of the postulated intracellular receptors has been problematical. In the present study we re-evaluated the molecular characterization of Scamper, the first proposed intracellular receptor for sphingosylphosphocholine [Mao, Kim, Almenoff, Rudner, Kearney and Kindman (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 1993-1996] and commonly believed to be a Ca(2+) channel of the endoplasmic reticulum (the name "SCaMPER" used by Mao et al. being derived from "sphingolipid Ca(2+)-release-mediating protein of the endoplasmic reticulum"). In contrast with what has been believed hitherto, our primary-structure and overexpression experiments indicate that Scamper is a 110-amino-acid protein spanning the membrane once with a Nexo/Ccyt topology [von Heijne and Gavel (1988) Eur. J. Biochem. 174, 671-678]. Overexpression of either wild-type or tagged Scamper induces a specific phenotype characterized by the rapid extension of actin-containing protrusions, followed by cell death.

Full Text

The Full Text of this article is available as a PDF (239.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ancellin N., Hla T. Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biol Chem. 1999 Jul 2;274(27):18997–19002. doi: 10.1074/jbc.274.27.18997. [DOI] [PubMed] [Google Scholar]
  2. Benham A. M., Cabibbo A., Fassio A., Bulleid N., Sitia R., Braakman I. The CXXCXXC motif determines the folding, structure and stability of human Ero1-Lalpha. EMBO J. 2000 Sep 1;19(17):4493–4502. doi: 10.1093/emboj/19.17.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benting J., Lecat S., Zacchetti D., Simons K. Protein expression in Drosophila Schneider cells. Anal Biochem. 2000 Feb 1;278(1):59–68. doi: 10.1006/abio.1999.4409. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J., Lipp P., Bootman M. D. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000 Oct;1(1):11–21. doi: 10.1038/35036035. [DOI] [PubMed] [Google Scholar]
  5. Betto R., Teresi A., Turcato F., Salviati G., Sabbadini R. A., Krown K., Glembotski C. C., Kindman L. A., Dettbarn C., Pereon Y. Sphingosylphosphocholine modulates the ryanodine receptor/calcium-release channel of cardiac sarcoplasmic reticulum membranes. Biochem J. 1997 Feb 15;322(Pt 1):327–333. doi: 10.1042/bj3220327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brady R. O., Kanfer J. N., Mock M. B., Fredrickson D. S. The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick diseae. Proc Natl Acad Sci U S A. 1966 Feb;55(2):366–369. doi: 10.1073/pnas.55.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown M. S., Ye J., Rawson R. B., Goldstein J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000 Feb 18;100(4):391–398. doi: 10.1016/s0092-8674(00)80675-3. [DOI] [PubMed] [Google Scholar]
  8. Bucci C., Parton R. G., Mather I. H., Stunnenberg H., Simons K., Hoflack B., Zerial M. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell. 1992 Sep 4;70(5):715–728. doi: 10.1016/0092-8674(92)90306-w. [DOI] [PubMed] [Google Scholar]
  9. Cheong K. H., Zacchetti D., Schneeberger E. E., Simons K. VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6241–6248. doi: 10.1073/pnas.96.11.6241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chin T. Y., Chueh S. H. Sphingosylphosphorylcholine stimulates mitogen-activated protein kinase via a Ca2+-dependent pathway. Am J Physiol. 1998 Nov;275(5 Pt 1):C1255–C1263. doi: 10.1152/ajpcell.1998.275.5.C1255. [DOI] [PubMed] [Google Scholar]
  11. Choi O. H., Kim J. H., Kinet J. P. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature. 1996 Apr 18;380(6575):634–636. doi: 10.1038/380634a0. [DOI] [PubMed] [Google Scholar]
  12. Desai N. N., Spiegel S. Sphingosylphosphorylcholine is a remarkably potent mitogen for a variety of cell lines. Biochem Biophys Res Commun. 1991 Nov 27;181(1):361–366. doi: 10.1016/s0006-291x(05)81427-5. [DOI] [PubMed] [Google Scholar]
  13. Dettbarn C., Betto R., Salviati G., Sabbadini R., Palade P. Involvement of ryanodine receptors in sphingosylphosphorylcholine-induced calcium release from brain microsomes. Brain Res. 1995 Jan 9;669(1):79–85. doi: 10.1016/0006-8993(94)01234-9. [DOI] [PubMed] [Google Scholar]
  14. Field J., Nikawa J., Broek D., MacDonald B., Rodgers L., Wilson I. A., Lerner R. A., Wigler M. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol. 1988 May;8(5):2159–2165. doi: 10.1128/mcb.8.5.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. García-Mata R., Bebök Z., Sorscher E. J., Sztul E. S. Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol. 1999 Sep 20;146(6):1239–1254. doi: 10.1083/jcb.146.6.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ghosh T. K., Bian J., Gill D. L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science. 1990 Jun 29;248(4963):1653–1656. doi: 10.1126/science.2163543. [DOI] [PubMed] [Google Scholar]
  17. Hannun Y. A., Bell R. M. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science. 1987 Feb 6;235(4789):670–674. doi: 10.1126/science.3101176. [DOI] [PubMed] [Google Scholar]
  18. Hebert S. C. General principles of the structure of ion channels. Am J Med. 1998 Jan;104(1):87–98. doi: 10.1016/s0002-9343(97)00358-6. [DOI] [PubMed] [Google Scholar]
  19. Hoersch S., Leroy C., Brown N. P., Andrade M. A., Sander C. The GeneQuiz web server: protein functional analysis through the Web. Trends Biochem Sci. 2000 Jan;25(1):33–35. doi: 10.1016/s0968-0004(99)01510-8. [DOI] [PubMed] [Google Scholar]
  20. Hofmann K., Bucher P., Falquet L., Bairoch A. The PROSITE database, its status in 1999. Nucleic Acids Res. 1999 Jan 1;27(1):215–219. doi: 10.1093/nar/27.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johnston J. A., Ward C. L., Kopito R. R. Aggresomes: a cellular response to misfolded proteins. J Cell Biol. 1998 Dec 28;143(7):1883–1898. doi: 10.1083/jcb.143.7.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kacker A., April M., Ward R. F. Use of potassium titanyl phosphate (KTP) laser in management of subglottic hemangiomas. Int J Pediatr Otorhinolaryngol. 2001 May 31;59(1):15–21. doi: 10.1016/s0165-5876(01)00451-7. [DOI] [PubMed] [Google Scholar]
  23. Kopito R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000 Dec;10(12):524–530. doi: 10.1016/s0962-8924(00)01852-3. [DOI] [PubMed] [Google Scholar]
  24. Lee M. J., Van Brocklyn J. R., Thangada S., Liu C. H., Hand A. R., Menzeleev R., Spiegel S., Hla T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 1998 Mar 6;279(5356):1552–1555. doi: 10.1126/science.279.5356.1552. [DOI] [PubMed] [Google Scholar]
  25. Lynch K. R., Im D. S. Life on the edg. Trends Pharmacol Sci. 1999 Dec;20(12):473–475. doi: 10.1016/s0165-6147(99)01401-7. [DOI] [PubMed] [Google Scholar]
  26. Mao C., Kim S. H., Almenoff J. S., Rudner X. L., Kearney D. M., Kindman L. A. Molecular cloning and characterization of SCaMPER, a sphingolipid Ca2+ release-mediating protein from endoplasmic reticulum. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1993–1996. doi: 10.1073/pnas.93.5.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meldolesi J., Pozzan T. The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol. 1998 Sep 21;142(6):1395–1398. doi: 10.1083/jcb.142.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meyer zu Heringdorf D., Niederdräing N., Neumann E., Fröde R., Lass H., Van Koppen C. J., Jakobs K. H. Discrimination between plasma membrane and intracellular target sites of sphingosylphosphorylcholine. Eur J Pharmacol. 1998 Jul 31;354(1):113–122. doi: 10.1016/s0014-2999(98)00436-1. [DOI] [PubMed] [Google Scholar]
  29. Meyer zu Heringdorf D., van Koppen C. J., Jakobs K. H. Molecular diversity of sphingolipid signalling. FEBS Lett. 1997 Jun 23;410(1):34–38. doi: 10.1016/s0014-5793(97)00320-7. [DOI] [PubMed] [Google Scholar]
  30. Peränen J., Rikkonen M., Hyvönen M., Käriäinen L. T7 vectors with modified T7lac promoter for expression of proteins in Escherichia coli. Anal Biochem. 1996 May 1;236(2):371–373. doi: 10.1006/abio.1996.0187. [DOI] [PubMed] [Google Scholar]
  31. Pyne S., Pyne N. J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J. 2000 Jul 15;349(Pt 2):385–402. doi: 10.1042/0264-6021:3490385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rodriguez-Lafrasse C., Vanier M. T. Sphingosylphosphorylcholine in Niemann-Pick disease brain: accumulation in type A but not in type B. Neurochem Res. 1999 Feb;24(2):199–205. doi: 10.1023/a:1022501702403. [DOI] [PubMed] [Google Scholar]
  33. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  34. Sekiguchi K., Yokoyama T., Kurabayashi M., Okajima F., Nagai R. Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes. Circ Res. 1999 Nov 26;85(11):1000–1008. doi: 10.1161/01.res.85.11.1000. [DOI] [PubMed] [Google Scholar]
  35. Spiegel S., Foster D., Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol. 1996 Apr;8(2):159–167. doi: 10.1016/s0955-0674(96)80061-5. [DOI] [PubMed] [Google Scholar]
  36. Spiegel S., Milstien S. Sphingolipid metabolites: members of a new class of lipid second messengers. J Membr Biol. 1995 Aug;146(3):225–237. doi: 10.1007/BF00233943. [DOI] [PubMed] [Google Scholar]
  37. Sutter G., Ohlmann M., Erfle V. Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase. FEBS Lett. 1995 Aug 28;371(1):9–12. doi: 10.1016/0014-5793(95)00843-x. [DOI] [PubMed] [Google Scholar]
  38. Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
  39. Van Brocklyn J. R., Lee M. J., Menzeleev R., Olivera A., Edsall L., Cuvillier O., Thomas D. M., Coopman P. J., Thangada S., Liu C. H. Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol. 1998 Jul 13;142(1):229–240. doi: 10.1083/jcb.142.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wilkinson M. A rapid and convenient method for isolation of nuclear, cytoplasmic and total cellular RNA. Nucleic Acids Res. 1988 Nov 25;16(22):10934–10934. doi: 10.1093/nar/16.22.10934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Windh R. T., Lee M. J., Hla T., An S., Barr A. J., Manning D. R. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem. 1999 Sep 24;274(39):27351–27358. doi: 10.1074/jbc.274.39.27351. [DOI] [PubMed] [Google Scholar]
  42. Xu Y., Zhu K., Hong G., Wu W., Baudhuin L. M., Xiao Y., Damron D. S. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol. 2000 May;2(5):261–267. doi: 10.1038/35010529. [DOI] [PubMed] [Google Scholar]
  43. Zacchetti D., Peränen J., Murata M., Fiedler K., Simons K. VIP17/MAL, a proteolipid in apical transport vesicles. FEBS Lett. 1995 Dec 27;377(3):465–469. doi: 10.1016/0014-5793(95)01396-2. [DOI] [PubMed] [Google Scholar]
  44. von Heijne G., Gavel Y. Topogenic signals in integral membrane proteins. Eur J Biochem. 1988 Jul 1;174(4):671–678. doi: 10.1111/j.1432-1033.1988.tb14150.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES