Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 15;362(Pt 1):223–229. doi: 10.1042/0264-6021:3620223

Expression of Drosophila melanogaster xanthine dehydrogenase in Aspergillus nidulans and some properties of the recombinant enzyme.

Benjamin Adams 1, David J Lowe 1, Andrew T Smith 1, Claudio Scazzocchio 1, Stephane Demais 1, Robert C Bray 1
PMCID: PMC1222379  PMID: 11829759

Abstract

Recent crystal structures of xanthine dehydrogenase, xanthine oxidase and related enzymes have paved the way for a detailed structural and functional analysis of these enzymes. One problem encountered when working with these proteins, especially with recombinant protein, is that the preparations tend to be heterogeneous, with only a fraction of the enzyme molecules being active. This is due to the incompleteness of post-translational modification, which for this protein is a complex, and incompletely understood, process involving incorporation of the Mo and Fe/S centres. The enzyme has been expressed previously in both Drosophila and insect cells using baculovirus. The insect cell system has been exploited by Iwasaki et al. [Iwasaki, Okamoto, Nishino, Mizushima and Hori (2000) J. Biochem (Tokyo) 127, 771-778], but, for the rat enzyme, yields a complex mixture of enzyme forms, containing around 10% of functional enzyme. The expression of Drosophila melanogaster xanthine dehydrogenase in Aspergillus nidulans is described. The purified protein has been analysed both functionally and spectroscopically. Its specific activity is indistinguishable from that of the enzyme purified from fruit flies [Doyle, Burke, Chovnick, Dutton, Whittle and Bray (1996) Eur. J. Biochem. 239, 782-795], and it appears to be more active than recombinant xanthine dehydrogenase produced with the baculovirus system. EPR spectra of the recombinant Drosophila enzyme are reported, including parameters for the Fe/S centres. Only a very weak "Fe/SIII" signal (g(1,2,3), 2.057, 1.930, 1.858) was observed, in contrast to the strong analogous signal reported for the enzyme from baculovirus. Since this signal appears to be associated with incomplete post-translational modification, this is consistent with relatively more complete cofactor incorporation in the Aspergillus-produced enzyme. Thus we have developed a recombinant expression system for D. melanogaster xanthine dehydrogenase, which can be used for the production of site-specific mutations of this enzyme.

Full Text

The Full Text of this article is available as a PDF (150.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B., Smith A. T., Doyle W. A., Bray R. C., Ryan M., Harrison R., Wolstenholme A. J., Romão M. J., Huber R., Demais S. Expression of wild-type and mutated Drosophila melanogaster xanthine dehydrogenases in Aspergillus nidulans. Biochem Soc Trans. 1997 Aug;25(3):520S–520S. doi: 10.1042/bst025520s. [DOI] [PubMed] [Google Scholar]
  2. Amrani L., Primus J., Glatigny A., Arcangeli L., Scazzocchio C., Finnerty V. Comparison of the sequences of the Aspergillus nidulans hxB and Drosophila melanogaster ma-l genes with nifS from Azotobacter vinelandii suggests a mechanism for the insertion of the terminal sulphur atom in the molybdopterin cofactor. Mol Microbiol. 2000 Oct;38(1):114–125. doi: 10.1046/j.1365-2958.2000.02119.x. [DOI] [PubMed] [Google Scholar]
  3. Baron A. J., Stevens C., Wilmot C., Seneviratne K. D., Blakeley V., Dooley D. M., Phillips S. E., Knowles P. F., McPherson M. J. Structure and mechanism of galactose oxidase. The free radical site. J Biol Chem. 1994 Oct 7;269(40):25095–25105. [PubMed] [Google Scholar]
  4. Bray R. C., Adams B., Smith A. T., Bennett B., Bailey S. Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family. Biochemistry. 2000 Sep 19;39(37):11258–11269. doi: 10.1021/bi0000521. [DOI] [PubMed] [Google Scholar]
  5. Bray R. C., Turner N. A., Le Gall J., Barata B. A., Moura J. J. Information from e.p.r. spectroscopy on the iron-sulphur centres of the iron-molybdenum protein (aldehyde oxidoreductase) of Desulfovibrio gigas. Biochem J. 1991 Dec 15;280(Pt 3):817–820. doi: 10.1042/bj2800817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doyle W. A., Bray R. C. Drosophila xanthine dehydrogenase variants re-visited. Biochem J. 1994 Jun 15;300(Pt 3):915–916. doi: 10.1042/bj3000915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doyle W. A., Burke J. F., Chovnick A., Dutton F. L., Whittle J. R., Bray R. C. Properties of xanthine dehydrogenase variants from rosy mutant strains of Drosophila melanogaster and their relevance to the enzyme's structure and mechanism. Eur J Biochem. 1996 Aug 1;239(3):782–795. doi: 10.1111/j.1432-1033.1996.0782u.x. [DOI] [PubMed] [Google Scholar]
  8. Edmondson D., Massey V., Palmer G., Beacham L. M., 3rd, Elion G. B. The resolution of active and inactive xanthine oxidase by affinity chromatography. J Biol Chem. 1972 Mar 10;247(5):1597–1604. [PubMed] [Google Scholar]
  9. Elion G. B. The purine path to chemotherapy. Science. 1989 Apr 7;244(4900):41–47. doi: 10.1126/science.2649979. [DOI] [PubMed] [Google Scholar]
  10. Enroth C., Eger B. T., Okamoto K., Nishino T., Nishino T., Pai E. F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10723–10728. doi: 10.1073/pnas.97.20.10723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gardlik S., Barber M. J., Rajagopalan K. V. A molybdopterin-free form of xanthine oxidase. Arch Biochem Biophys. 1987 Dec;259(2):363–371. doi: 10.1016/0003-9861(87)90502-9. [DOI] [PubMed] [Google Scholar]
  12. Glatigny A., Scazzocchio C. Cloning and molecular characterization of hxA, the gene coding for the xanthine dehydrogenase (purine hydroxylase I) of Aspergillus nidulans. J Biol Chem. 1995 Feb 24;270(8):3534–3550. doi: 10.1074/jbc.270.8.3534. [DOI] [PubMed] [Google Scholar]
  13. Godber B., Sanders S., Harrison R., Eisenthal R., Bray R. C. > or = 95% of xanthine oxidase in human milk is present as the demolybdo form, lacking molybdopterin. Biochem Soc Trans. 1997 Aug;25(3):519S–519S. doi: 10.1042/bst025519s. [DOI] [PubMed] [Google Scholar]
  14. Hart L. I., McGartoll M. A., Chapman H. R., Bray R. C. The composition of milk xanthine oxidase. Biochem J. 1970 Mar;116(5):851–864. doi: 10.1042/bj1160851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hille R., Hagen W. R., Dunham W. R. Spectroscopic studies on the iron-sulfur centers of milk xanthine oxidase. J Biol Chem. 1985 Sep 5;260(19):10569–10575. [PubMed] [Google Scholar]
  16. Hille Russ. The Mononuclear Molybdenum Enzymes. Chem Rev. 1996 Nov 7;96(7):2757–2816. doi: 10.1021/cr950061t. [DOI] [PubMed] [Google Scholar]
  17. Iwasaki T., Okamoto K., Nishino T., Mizushima J., Hori H. Sequence motif-specific assignment of two [2Fe-2S] clusters in rat xanthine oxidoreductase studied by site-directed mutagenesis. J Biochem. 2000 May;127(5):771–778. doi: 10.1093/oxfordjournals.jbchem.a022669. [DOI] [PubMed] [Google Scholar]
  18. Lowe D. J., Lynden-Bell R. M., Bray R. C. Spin-spin interaction between molybdenum and one of the iron-sulphur systems of xanthine oxidase and its relevance to the enzymic mechanism. Biochem J. 1972 Nov;130(1):239–249. doi: 10.1042/bj1300239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MORELL D. B. The nature and catalytic activities of milk xanthine oxidase. Biochem J. 1952 Aug;51(5):657–666. doi: 10.1042/bj0510657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Malthouse J. P., Gutteridge S., Bray R. C. Rapid type 2 molybdenum(V) electron-paramagnetic resonance signals from xanthine oxidase and the structure of the active centre of the enzyme. Biochem J. 1980 Mar 1;185(3):767–770. doi: 10.1042/bj1850767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martinez C., Nicolas A., van Tilbeurgh H., Egloff M. P., Cudrey C., Verger R., Cambillau C. Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry. 1994 Jan 11;33(1):83–89. doi: 10.1021/bi00167a011. [DOI] [PubMed] [Google Scholar]
  22. McGartoll M. A., Pick F. M., Swann J. C., Bray R. C. Properties of xanthine oxidase preparations dependent on the proportions of active and inactivated enzyme. Biochim Biophys Acta. 1970 Sep 16;212(3):523–526. doi: 10.1016/0005-2744(70)90264-0. [DOI] [PubMed] [Google Scholar]
  23. Nishino T. The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury. J Biochem. 1994 Jul;116(1):1–6. doi: 10.1093/oxfordjournals.jbchem.a124480. [DOI] [PubMed] [Google Scholar]
  24. Pick F. M., Bray R. C. Complex-formation between reduced xanthine oxidase and purine substrates demonstrated by electron paramagnetic resonance. Biochem J. 1969 Oct;114(4):735–742. doi: 10.1042/bj1140735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ROUSH A., NORRIS E. R. The inhibition of xanthine oxidase by borates. Arch Biochem. 1950 Dec;29(2):344–347. [PubMed] [Google Scholar]
  26. Romão M. J., Archer M., Moura I., Moura J. J., LeGall J., Engh R., Schneider M., Hof P., Huber R. Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas. Science. 1995 Nov 17;270(5239):1170–1176. doi: 10.1126/science.270.5239.1170. [DOI] [PubMed] [Google Scholar]
  27. Scazzocchio C., Holl F. B., Foguelman A. I. The genetic control of molybdoflavoproteins in Aspergillus nidulans. Allopurinol-resistant mutants constitutive for xanthine-dehydrogenase. Eur J Biochem. 1973 Jul 16;36(2):428–445. doi: 10.1111/j.1432-1033.1973.tb02928.x. [DOI] [PubMed] [Google Scholar]
  28. Tilburn J., Scazzocchio C., Taylor G. G., Zabicky-Zissman J. H., Lockington R. A., Davies R. W. Transformation by integration in Aspergillus nidulans. Gene. 1983 Dec;26(2-3):205–221. doi: 10.1016/0378-1119(83)90191-9. [DOI] [PubMed] [Google Scholar]
  29. Turner N. A., Doyle W. A., Ventom A. M., Bray R. C. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase. Eur J Biochem. 1995 Sep 1;232(2):646–657. [PubMed] [Google Scholar]
  30. Ventom A. M., Deistung J., Bray R. C. The isolation of demolybdo xanthine oxidase from bovine milk. Biochem J. 1988 Nov 1;255(3):949–956. doi: 10.1042/bj2550949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Watanabe T., Ihara N., Itoh T., Fujita T., Sugimoto Y. Deletion mutation in Drosophila ma-l homologous, putative molybdopterin cofactor sulfurase gene is associated with bovine xanthinuria type II. J Biol Chem. 2000 Jul 21;275(29):21789–21792. doi: 10.1074/jbc.C000230200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES