Abstract
When grown on blood-containing solid media, the anaerobic periodontal pathogen Porphyromonas gingivalis produces a haem pigment, the major component of which is the mu-oxo bishaem of iron protoporphyrin IX [Smalley, Silver, Marsh and Birss (1998) Biochem. J. 331, 681-685]. In this study, mu-oxo bishaem generation by P. gingivalis from oxy- and deoxyhaemoglobin was examined. Bacterial cells were shown to convert oxyhaemoglobin into methaemoglobin, which was degraded progressively, generating a mixture of both monomeric and mu-oxo dimeric iron protoporphyrin IX. The rate of methaemoglobin formation was accelerated in the presence of bacterial cells, but was inhibited by N-ethylmaleimide and tosyl-lysylchloromethylketone. Interaction of cells with deoxyhaemoglobin resulted in formation of an iron(III) haem species (Soret gamma(max), 393 nm), identified as pure mu-oxo bishaem.
Full Text
The Full Text of this article is available as a PDF (164.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amano A., Ishimoto T., Tamagawa H., Shizukuishi S. Role of superoxide dismutase in resistance of Porphyromonas gingivalis to killing by polymorphonuclear leukocytes. Infect Immun. 1992 Feb;60(2):712–714. doi: 10.1128/iai.60.2.712-714.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amano A., Tamagawa H., Shizukuishi S., Tsunemitsu A. Superoxide dismutase, catalase and peroxidases in oral anaerobic bacteria. J Osaka Univ Dent Sch. 1986 Dec;26:187–192. [PubMed] [Google Scholar]
- Benesch R. E., Benesch R., Macduff G. Subunit exchange and ligand binding: a new hypothesis for the mechanism of oxygenation of hemoglobin. Proc Natl Acad Sci U S A. 1965 Aug;54(2):535–542. doi: 10.1073/pnas.54.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bickel M., Cimasoni G. The pH of human crevicular fluid measured by a new microanalytical technique. J Periodontal Res. 1985 Jan;20(1):35–40. doi: 10.1111/j.1600-0765.1985.tb00408.x. [DOI] [PubMed] [Google Scholar]
- Bramanti T. E., Holt S. C. Roles of porphyrins and host iron transport proteins in regulation of growth of Porphyromonas gingivalis W50. J Bacteriol. 1991 Nov;173(22):7330–7339. doi: 10.1128/jb.173.22.7330-7339.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S. B., Shillcock M., Jones P. Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution. Biochem J. 1976 Feb 1;153(2):279–285. doi: 10.1042/bj1530279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu L., Bramanti T. E., Ebersole J. L., Holt S. C. Hemolytic activity in the periodontopathogen Porphyromonas gingivalis: kinetics of enzyme release and localization. Infect Immun. 1991 Jun;59(6):1932–1940. doi: 10.1128/iai.59.6.1932-1940.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cutler C. W., Kalmar J. R., Genco C. A. Pathogenic strategies of the oral anaerobe, Porphyromonas gingivalis. Trends Microbiol. 1995 Feb;3(2):45–51. doi: 10.1016/s0966-842x(00)88874-5. [DOI] [PubMed] [Google Scholar]
- DeCarlo A. A., Paramaesvaran M., Yun P. L., Collyer C., Hunter N. Porphyrin-mediated binding to hemoglobin by the HA2 domain of cysteine proteinases (gingipains) and hemagglutinins from the periodontal pathogen Porphyromonas gingivalis. J Bacteriol. 1999 Jun;181(12):3784–3791. doi: 10.1128/jb.181.12.3784-3791.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeYoung A., Noble R. W. Oxygen binding to sickle cell hemoglobin. Methods Enzymol. 1981;76:792–803. doi: 10.1016/0076-6879(81)76158-5. [DOI] [PubMed] [Google Scholar]
- Eggert F. M., Drewell L., Bigelow J. A., Speck J. E., Goldner M. The pH of gingival crevices and periodontal pockets in children, teenagers and adults. Arch Oral Biol. 1991;36(3):233–238. doi: 10.1016/0003-9969(91)90091-8. [DOI] [PubMed] [Google Scholar]
- Fujimura S., Hirai K., Shibata Y., Nakayama K., Nakamura T. Comparative properties of envelope-associated arginine-gingipains and lysine-gingipain of Porphyromonas gingivalis. FEMS Microbiol Lett. 1998 Jun 15;163(2):173–179. doi: 10.1111/j.1574-6968.1998.tb13042.x. [DOI] [PubMed] [Google Scholar]
- JAFFE E. R., NEURMANN G. A COMPARISION OF THE EFFECT OF MENADIONE, METHYLENE BLUE AND ASCORBIC ACID ON THE REDUCTION OF METHEMOGLOBIN IN VIVO. Nature. 1964 May 9;202:607–608. doi: 10.1038/202607a0. [DOI] [PubMed] [Google Scholar]
- Jones P., Robson T., Brown S. B. The catalase activity of ferrihaems. Biochem J. 1973 Oct;135(2):353–359. doi: 10.1042/bj1350353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karunakaran T., Holt S. C. Cloning of two distinct hemolysin genes from Porphyromonas (Bacteroides) gingivalis in Escherichia coli. Microb Pathog. 1993 Jul;15(1):37–49. doi: 10.1006/mpat.1993.1055. [DOI] [PubMed] [Google Scholar]
- Kay H. M., Birss A. J., Smalley J. W. Haemagglutinating and haemolytic activity of the extracellular vesicles of Bacteroides gingivalis W50. Oral Microbiol Immunol. 1990 Oct;5(5):269–274. doi: 10.1111/j.1399-302x.1990.tb00424.x. [DOI] [PubMed] [Google Scholar]
- Kuboniwa M., Amano A., Shizukuishi S. Hemoglobin-binding protein purified from Porphyromonas gingivalis is identical to lysine-specific cysteine proteinase (Lys-gingipain). Biochem Biophys Res Commun. 1998 Aug 10;249(1):38–43. doi: 10.1006/bbrc.1998.8958. [DOI] [PubMed] [Google Scholar]
- Lewis J. P., Dawson J. A., Hannis J. C., Muddiman D., Macrina F. L. Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83. J Bacteriol. 1999 Aug;181(16):4905–4913. doi: 10.1128/jb.181.16.4905-4913.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loesche W. J., Gusberti F., Mettraux G., Higgins T., Syed S. Relationship between oxygen tension and subgingival bacterial flora in untreated human periodontal pockets. Infect Immun. 1983 Nov;42(2):659–667. doi: 10.1128/iai.42.2.659-667.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mettraux G. R., Gusberti F. A., Graf H. Oxygen tension (pO2) in untreated human periodontal pockets. J Periodontol. 1984 Sep;55(9):516–521. doi: 10.1902/jop.1984.55.9.516. [DOI] [PubMed] [Google Scholar]
- Misra H. P., Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972 Nov 10;247(21):6960–6962. [PubMed] [Google Scholar]
- Nakayama K. Rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis. J Bacteriol. 1994 Apr;176(7):1939–1943. doi: 10.1128/jb.176.7.1939-1943.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto K., Nakayama K., Kadowaki T., Abe N., Ratnayake D. B., Yamamoto K. Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis. J Biol Chem. 1998 Aug 14;273(33):21225–21231. doi: 10.1074/jbc.273.33.21225. [DOI] [PubMed] [Google Scholar]
- Satoh Y., Shikama K. Autoxidation of oxymyoglobin. A nucleophilic displacement mechanism. J Biol Chem. 1981 Oct 25;256(20):10272–10275. [PubMed] [Google Scholar]
- Smalley J. W., Birss A. J., McKee A. S., Marsh P. D. Hemin regulation of hemoglobin binding by Porphyromonas gingivalis. Curr Microbiol. 1998 Feb;36(2):102–106. doi: 10.1007/s002849900287. [DOI] [PubMed] [Google Scholar]
- Smalley J. W., Birss A. J., Percival R., Marsh P. D. Temperature elevation regulates iron protoporphyrin IX and hemoglobin binding by Porphyromonas gingivalis. Curr Microbiol. 2000 Nov;41(5):328–335. doi: 10.1007/s002840010144. [DOI] [PubMed] [Google Scholar]
- Smalley J. W., Birss A. J., Silver J. The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the mu-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett. 2000 Feb 1;183(1):159–164. doi: 10.1111/j.1574-6968.2000.tb08951.x. [DOI] [PubMed] [Google Scholar]
- Smalley J. W., Silver J., Marsh P. J., Birss A. J. The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the mu-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J. 1998 May 1;331(Pt 3):681–685. doi: 10.1042/bj3310681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace W. J., Houtchens R. A., Maxwell J. C., Caughey W. S. Mechanism of autooxidation for hemoglobins and myoglobins. Promotion of superoxide production by protons and anions. J Biol Chem. 1982 May 10;257(9):4966–4977. [PubMed] [Google Scholar]
- Wallace W. J., Maxwell J. C., Caughey W. S. The mechanisms of hemoglobin autoxidation. Evidence for proton-assisted nucleophilic displacement of superoxide by anions. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1104–1110. doi: 10.1016/0006-291x(74)90810-9. [DOI] [PubMed] [Google Scholar]
- White J. M., Dacie J. V. The unstable hemoglobins--molecular and clinical features. Prog Hematol. 1971;7(0):69–109. [PubMed] [Google Scholar]