Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 15;362(Pt 1):239–245. doi: 10.1042/0264-6021:3620239

Interactions of Porphyromonas gingivalis with oxyhaemoglobin and deoxyhaemoglobin.

John W Smalley 1, Andrew J Birss 1, Robert Withnall 1, Jack Silver 1
PMCID: PMC1222381  PMID: 11829761

Abstract

When grown on blood-containing solid media, the anaerobic periodontal pathogen Porphyromonas gingivalis produces a haem pigment, the major component of which is the mu-oxo bishaem of iron protoporphyrin IX [Smalley, Silver, Marsh and Birss (1998) Biochem. J. 331, 681-685]. In this study, mu-oxo bishaem generation by P. gingivalis from oxy- and deoxyhaemoglobin was examined. Bacterial cells were shown to convert oxyhaemoglobin into methaemoglobin, which was degraded progressively, generating a mixture of both monomeric and mu-oxo dimeric iron protoporphyrin IX. The rate of methaemoglobin formation was accelerated in the presence of bacterial cells, but was inhibited by N-ethylmaleimide and tosyl-lysylchloromethylketone. Interaction of cells with deoxyhaemoglobin resulted in formation of an iron(III) haem species (Soret gamma(max), 393 nm), identified as pure mu-oxo bishaem.

Full Text

The Full Text of this article is available as a PDF (164.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano A., Ishimoto T., Tamagawa H., Shizukuishi S. Role of superoxide dismutase in resistance of Porphyromonas gingivalis to killing by polymorphonuclear leukocytes. Infect Immun. 1992 Feb;60(2):712–714. doi: 10.1128/iai.60.2.712-714.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amano A., Tamagawa H., Shizukuishi S., Tsunemitsu A. Superoxide dismutase, catalase and peroxidases in oral anaerobic bacteria. J Osaka Univ Dent Sch. 1986 Dec;26:187–192. [PubMed] [Google Scholar]
  3. Benesch R. E., Benesch R., Macduff G. Subunit exchange and ligand binding: a new hypothesis for the mechanism of oxygenation of hemoglobin. Proc Natl Acad Sci U S A. 1965 Aug;54(2):535–542. doi: 10.1073/pnas.54.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bickel M., Cimasoni G. The pH of human crevicular fluid measured by a new microanalytical technique. J Periodontal Res. 1985 Jan;20(1):35–40. doi: 10.1111/j.1600-0765.1985.tb00408.x. [DOI] [PubMed] [Google Scholar]
  5. Bramanti T. E., Holt S. C. Roles of porphyrins and host iron transport proteins in regulation of growth of Porphyromonas gingivalis W50. J Bacteriol. 1991 Nov;173(22):7330–7339. doi: 10.1128/jb.173.22.7330-7339.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown S. B., Shillcock M., Jones P. Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution. Biochem J. 1976 Feb 1;153(2):279–285. doi: 10.1042/bj1530279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chu L., Bramanti T. E., Ebersole J. L., Holt S. C. Hemolytic activity in the periodontopathogen Porphyromonas gingivalis: kinetics of enzyme release and localization. Infect Immun. 1991 Jun;59(6):1932–1940. doi: 10.1128/iai.59.6.1932-1940.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cutler C. W., Kalmar J. R., Genco C. A. Pathogenic strategies of the oral anaerobe, Porphyromonas gingivalis. Trends Microbiol. 1995 Feb;3(2):45–51. doi: 10.1016/s0966-842x(00)88874-5. [DOI] [PubMed] [Google Scholar]
  9. DeCarlo A. A., Paramaesvaran M., Yun P. L., Collyer C., Hunter N. Porphyrin-mediated binding to hemoglobin by the HA2 domain of cysteine proteinases (gingipains) and hemagglutinins from the periodontal pathogen Porphyromonas gingivalis. J Bacteriol. 1999 Jun;181(12):3784–3791. doi: 10.1128/jb.181.12.3784-3791.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DeYoung A., Noble R. W. Oxygen binding to sickle cell hemoglobin. Methods Enzymol. 1981;76:792–803. doi: 10.1016/0076-6879(81)76158-5. [DOI] [PubMed] [Google Scholar]
  11. Eggert F. M., Drewell L., Bigelow J. A., Speck J. E., Goldner M. The pH of gingival crevices and periodontal pockets in children, teenagers and adults. Arch Oral Biol. 1991;36(3):233–238. doi: 10.1016/0003-9969(91)90091-8. [DOI] [PubMed] [Google Scholar]
  12. Fujimura S., Hirai K., Shibata Y., Nakayama K., Nakamura T. Comparative properties of envelope-associated arginine-gingipains and lysine-gingipain of Porphyromonas gingivalis. FEMS Microbiol Lett. 1998 Jun 15;163(2):173–179. doi: 10.1111/j.1574-6968.1998.tb13042.x. [DOI] [PubMed] [Google Scholar]
  13. JAFFE E. R., NEURMANN G. A COMPARISION OF THE EFFECT OF MENADIONE, METHYLENE BLUE AND ASCORBIC ACID ON THE REDUCTION OF METHEMOGLOBIN IN VIVO. Nature. 1964 May 9;202:607–608. doi: 10.1038/202607a0. [DOI] [PubMed] [Google Scholar]
  14. Jones P., Robson T., Brown S. B. The catalase activity of ferrihaems. Biochem J. 1973 Oct;135(2):353–359. doi: 10.1042/bj1350353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karunakaran T., Holt S. C. Cloning of two distinct hemolysin genes from Porphyromonas (Bacteroides) gingivalis in Escherichia coli. Microb Pathog. 1993 Jul;15(1):37–49. doi: 10.1006/mpat.1993.1055. [DOI] [PubMed] [Google Scholar]
  16. Kay H. M., Birss A. J., Smalley J. W. Haemagglutinating and haemolytic activity of the extracellular vesicles of Bacteroides gingivalis W50. Oral Microbiol Immunol. 1990 Oct;5(5):269–274. doi: 10.1111/j.1399-302x.1990.tb00424.x. [DOI] [PubMed] [Google Scholar]
  17. Kuboniwa M., Amano A., Shizukuishi S. Hemoglobin-binding protein purified from Porphyromonas gingivalis is identical to lysine-specific cysteine proteinase (Lys-gingipain). Biochem Biophys Res Commun. 1998 Aug 10;249(1):38–43. doi: 10.1006/bbrc.1998.8958. [DOI] [PubMed] [Google Scholar]
  18. Lewis J. P., Dawson J. A., Hannis J. C., Muddiman D., Macrina F. L. Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83. J Bacteriol. 1999 Aug;181(16):4905–4913. doi: 10.1128/jb.181.16.4905-4913.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Loesche W. J., Gusberti F., Mettraux G., Higgins T., Syed S. Relationship between oxygen tension and subgingival bacterial flora in untreated human periodontal pockets. Infect Immun. 1983 Nov;42(2):659–667. doi: 10.1128/iai.42.2.659-667.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mettraux G. R., Gusberti F. A., Graf H. Oxygen tension (pO2) in untreated human periodontal pockets. J Periodontol. 1984 Sep;55(9):516–521. doi: 10.1902/jop.1984.55.9.516. [DOI] [PubMed] [Google Scholar]
  21. Misra H. P., Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972 Nov 10;247(21):6960–6962. [PubMed] [Google Scholar]
  22. Nakayama K. Rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis. J Bacteriol. 1994 Apr;176(7):1939–1943. doi: 10.1128/jb.176.7.1939-1943.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okamoto K., Nakayama K., Kadowaki T., Abe N., Ratnayake D. B., Yamamoto K. Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis. J Biol Chem. 1998 Aug 14;273(33):21225–21231. doi: 10.1074/jbc.273.33.21225. [DOI] [PubMed] [Google Scholar]
  24. Satoh Y., Shikama K. Autoxidation of oxymyoglobin. A nucleophilic displacement mechanism. J Biol Chem. 1981 Oct 25;256(20):10272–10275. [PubMed] [Google Scholar]
  25. Smalley J. W., Birss A. J., McKee A. S., Marsh P. D. Hemin regulation of hemoglobin binding by Porphyromonas gingivalis. Curr Microbiol. 1998 Feb;36(2):102–106. doi: 10.1007/s002849900287. [DOI] [PubMed] [Google Scholar]
  26. Smalley J. W., Birss A. J., Percival R., Marsh P. D. Temperature elevation regulates iron protoporphyrin IX and hemoglobin binding by Porphyromonas gingivalis. Curr Microbiol. 2000 Nov;41(5):328–335. doi: 10.1007/s002840010144. [DOI] [PubMed] [Google Scholar]
  27. Smalley J. W., Birss A. J., Silver J. The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the mu-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett. 2000 Feb 1;183(1):159–164. doi: 10.1111/j.1574-6968.2000.tb08951.x. [DOI] [PubMed] [Google Scholar]
  28. Smalley J. W., Silver J., Marsh P. J., Birss A. J. The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the mu-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J. 1998 May 1;331(Pt 3):681–685. doi: 10.1042/bj3310681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wallace W. J., Houtchens R. A., Maxwell J. C., Caughey W. S. Mechanism of autooxidation for hemoglobins and myoglobins. Promotion of superoxide production by protons and anions. J Biol Chem. 1982 May 10;257(9):4966–4977. [PubMed] [Google Scholar]
  30. Wallace W. J., Maxwell J. C., Caughey W. S. The mechanisms of hemoglobin autoxidation. Evidence for proton-assisted nucleophilic displacement of superoxide by anions. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1104–1110. doi: 10.1016/0006-291x(74)90810-9. [DOI] [PubMed] [Google Scholar]
  31. White J. M., Dacie J. V. The unstable hemoglobins--molecular and clinical features. Prog Hematol. 1971;7(0):69–109. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES