Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 15;362(Pt 1):247–251. doi: 10.1042/0264-6021:3620247

Ceramide and sphingosine have an antagonistic effect on the plasma-membrane Ca2+-ATPase from human erythrocytes.

Claudia Colina 1, Vincenza Cervino 1, Gustavo Benaim 1
PMCID: PMC1222382  PMID: 11829762

Abstract

The plasma-membrane Ca(2+)-ATPase is a key enzyme in the regulation of the intracellular Ca(2+) concentration. On the other hand, sphingolipids have been recognized recently as important second messengers, acting in many systems in combination with Ca(2+). In view of the fact that the Ca(2+)-ATPase is stimulated by ethanol, and since sphingolipids possess free hydroxy groups, we decided to study the possible effect of ceramide and sphingosine on this calcium pump. Here we show that ceramide stimulates the Ca(2+)-ATPase in a dose-dependent manner and additively to the activation observed in the presence of calmodulin or ethanol, when compared with any of these effectors added alone. Ceramide affects both the affinity for Ca(2+) and the V(max) of the enzyme. Furthermore, this second messenger also stimulates Ca(2+) transport in inside-out plasma-membrane vesicles from erythro cytes. Conversely, sphingosine, which is reported to act in many systems antagonistically with ceramide, showed an inhibitory effect on Ca(2+)-ATPase activity. This inhibition was also observed on the calmodulin-stimulated enzyme. These results, taken together, suggest that ceramide and sphingosine act antagonistically on the plasma-membrane Ca(2+)-ATPase. This is in accordance with the frequently reported opposite effect of these sphingolipids on intracellular Ca(2+) concentration.

Full Text

The Full Text of this article is available as a PDF (131.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benaim G., Cervino V., Lopez-Estraño C., Weitzman C. Ethanol stimulates the plasma membrane calcium pump from human erythrocytes. Biochim Biophys Acta. 1994 Oct 12;1195(1):141–148. doi: 10.1016/0005-2736(94)90020-5. [DOI] [PubMed] [Google Scholar]
  2. Benaim G., Losada S., Gadelha F. R., Docampo R. A calmodulin-activated (Ca(2+)-Mg2+)-ATPase is involved in Ca2+ transport by plasma membrane vesicles from Trypanosoma cruzi. Biochem J. 1991 Dec 15;280(Pt 3):715–720. doi: 10.1042/bj2800715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benaim G., Moreno S. N., Hutchinson G., Cervino V., Hermoso T., Romero P. J., Ruiz F., de Souza W., Docampo R. Characterization of the plasma-membrane calcium pump from Trypanosoma cruzi. Biochem J. 1995 Feb 15;306(Pt 1):299–303. doi: 10.1042/bj3060299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benaim G., Zurini M., Carafoli E. Different conformational states of the purified Ca2+-ATPase of the erythrocyte plasma membrane revealed by controlled trypsin proteolysis. J Biol Chem. 1984 Jul 10;259(13):8471–8477. [PubMed] [Google Scholar]
  5. Benaim G., de Meis L. Activation of the purified erythrocyte plasma membrane Ca2+- ATPase by organic solvents. FEBS Lett. 1989 Feb 27;244(2):484–486. doi: 10.1016/0014-5793(89)80589-7. [DOI] [PubMed] [Google Scholar]
  6. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  7. Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 1994 Oct;8(13):993–1002. [PubMed] [Google Scholar]
  8. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  9. Caroni P., Carafoli E. Regulation of Ca2+-pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation Process. J Biol Chem. 1981 Sep 25;256(18):9371–9373. [PubMed] [Google Scholar]
  10. Cervino V., Benaim G., Carafoli E., Guerini D. The effect of ethanol on the plasma membrane calcium pump is isoform-specific. J Biol Chem. 1998 Nov 6;273(45):29811–29815. doi: 10.1074/jbc.273.45.29811. [DOI] [PubMed] [Google Scholar]
  11. Chao C. P., Laulederkind S. J., Ballou L. R. Sphingosine-mediated phosphatidylinositol metabolism and calcium mobilization. J Biol Chem. 1994 Feb 25;269(8):5849–5856. [PubMed] [Google Scholar]
  12. Chik C. L., Li B., Negishi T., Karpinski E., Ho A. K. Ceramide inhibits L-type calcium channel currents in rat pinealocytes. Endocrinology. 1999 Dec;140(12):5682–5690. doi: 10.1210/endo.140.12.7199. [DOI] [PubMed] [Google Scholar]
  13. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  14. Gopinath R. M., Vincenzi F. F. Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+-Mg2+)ATPase. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1203–1209. doi: 10.1016/s0006-291x(77)80107-1. [DOI] [PubMed] [Google Scholar]
  15. Grosman N. Influence of probes for calcium-calmodulin and protein kinase C signalling on the plasma membrane Ca2+-ATPase activity of rat synaptosomes and leukocyte membranes. Immunopharmacology. 1998 Aug;40(2):163–171. doi: 10.1016/s0162-3109(98)00042-3. [DOI] [PubMed] [Google Scholar]
  16. Guerini D., Krebs J., Carafoli E. Stimulation of the purified erythrocyte Ca2+-ATPase by tryptic fragments of calmodulin. J Biol Chem. 1984 Dec 25;259(24):15172–15177. [PubMed] [Google Scholar]
  17. Hannun Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994 Feb 4;269(5):3125–3128. [PubMed] [Google Scholar]
  18. Huang H. W., Goldberg E. M., Zidovetzki R. Ceramides modulate protein kinase C activity and perturb the structure of Phosphatidylcholine/Phosphatidylserine bilayers. Biophys J. 1999 Sep;77(3):1489–1497. doi: 10.1016/S0006-3495(99)76996-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jarrett H. W., Penniston J. T. Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3':5' - cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1210–1216. doi: 10.1016/s0006-291x(77)80108-3. [DOI] [PubMed] [Google Scholar]
  20. Jefferson A. B., Schulman H. Sphingosine inhibits calmodulin-dependent enzymes. J Biol Chem. 1988 Oct 25;263(30):15241–15244. [PubMed] [Google Scholar]
  21. Kolesnick R. N. Sphingomyelin and derivatives as cellular signals. Prog Lipid Res. 1991;30(1):1–38. doi: 10.1016/0163-7827(91)90005-p. [DOI] [PubMed] [Google Scholar]
  22. Kosk-Kosicka D., Bzdega T. Activation of the erythrocyte Ca2+-ATPase by either self-association or interaction with calmodulin. J Biol Chem. 1988 Dec 5;263(34):18184–18189. [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Mathias S., Peña L. A., Kolesnick R. N. Signal transduction of stress via ceramide. Biochem J. 1998 Nov 1;335(Pt 3):465–480. doi: 10.1042/bj3350465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Merrill A. H., Jr, Schmelz E. M., Dillehay D. L., Spiegel S., Shayman J. A., Schroeder J. J., Riley R. T., Voss K. A., Wang E. Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol. 1997 Jan;142(1):208–225. doi: 10.1006/taap.1996.8029. [DOI] [PubMed] [Google Scholar]
  26. Niggli V., Adunyah E. S., Carafoli E. Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+ - ATPase. J Biol Chem. 1981 Aug 25;256(16):8588–8592. [PubMed] [Google Scholar]
  27. Niggli V., Penniston J. T., Carafoli E. Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem. 1979 Oct 25;254(20):9955–9958. [PubMed] [Google Scholar]
  28. Niggli V., Zurini M., Carafoli E. Purification, reconstitution, and molecular characterization of the Ca2+ pump of plasma membranes. Methods Enzymol. 1987;139:791–808. doi: 10.1016/0076-6879(87)39127-x. [DOI] [PubMed] [Google Scholar]
  29. Ohanian J., Liu G., Ohanian V., Heagerty A. M. Lipid second messengers derived from glycerolipids and sphingolipids, and their role in smooth muscle function. Acta Physiol Scand. 1998 Dec;164(4):533–548. doi: 10.1111/j.1365-201x.1998.tb10703.x. [DOI] [PubMed] [Google Scholar]
  30. Olivera A., Zhang H., Carlson R. O., Mattie M. E., Schmidt R. R., Spiegel S. Stereospecificity of sphingosine-induced intracellular calcium mobilization and cellular proliferation. J Biol Chem. 1994 Jul 8;269(27):17924–17930. [PubMed] [Google Scholar]
  31. Pyne S., Pyne N. J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J. 2000 Jul 15;349(Pt 2):385–402. doi: 10.1042/0264-6021:3490385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shayman J. A. Sphingolipids. Kidney Int. 2000 Jul;58(1):11–26. doi: 10.1046/j.1523-1755.2000.00136.x. [DOI] [PubMed] [Google Scholar]
  33. Smallwood J. I., Gügi B., Rasmussen H. Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J Biol Chem. 1988 Feb 15;263(5):2195–2202. [PubMed] [Google Scholar]
  34. Suju M., Davila M., Poleo G., Docampo R., Benaim G. Phosphatidylethanol stimulates the plasma-membrane calcium pump from human erythrocytes. Biochem J. 1996 Aug 1;317(Pt 3):933–938. doi: 10.1042/bj3170933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Venkataraman K., Futerman A. H. Ceramide as a second messenger: sticky solutions to sticky problems. Trends Cell Biol. 2000 Oct;10(10):408–412. doi: 10.1016/s0962-8924(00)01830-4. [DOI] [PubMed] [Google Scholar]
  36. Wang K. K., Villalobo A., Roufogalis B. D. Calmodulin-binding proteins as calpain substrates. Biochem J. 1989 Sep 15;262(3):693–706. doi: 10.1042/bj2620693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wuytack F., Raeymaekers L. The Ca(2+)-transport ATPases from the plasma membrane. J Bioenerg Biomembr. 1992 Jun;24(3):285–300. doi: 10.1007/BF00768849. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES