Abstract
Even though all animal alpha-amylases include glycosylation sequons (Asn-Xaa-Thr/Ser) in their sequences, amylases purified from natural sources are not quantitatively glycosylated. When wild-type rat pancreatic alpha-amylase, which contains two glycosylation sequons, was expressed in animal cell lines the protein displayed a very low rate of glycosylation (approx. 2%), even after Brefeldin A treatment to increase the contact with the glycosylation machinery. Site-directed mutagenesis of the first glycosylation sequon (Asn(410)-->Gln) resulted in 90% of the protein being glycosylated at the second glycosylation sequon (Asn(459)). Mutation of the second sequon completely inhibited glycosylation. In order to ascertain if the interference in the glycosylation of Asn(459) that was eliminated by the Asn(410)-->Gln mutation could be due to the position of the asparagine residue in the Cys(448)-Cys(460) disulphide bridge, these cysteine residues were mutated to serine residues. The resulting mutant was found to be 100% glycosylated. All mutants with mutations in the C-domain had specific activities identical to that of the wild-type enzyme, indicating that enzymic activity is independent of the structure and modification of the C-terminal domain. To further test the independence of the C-domain with respect to the two N-terminal domains of the protein, which harbour the catalytic site, the last seven of the ten beta\beta-strands that make up the beta-sandwich configuration of the domain were deleted. The truncated protein was not secreted from cells and all enzyme activity was destroyed. These observations show that Asn(459) is the only site that can be glycosylated in wild-type amylase, and confirm the relative independence of the C-terminal domain of alpha-amylase with respect to enzyme activity. In addition, they also establish that the C-terminal domain is absolutely essential for the correct post-translational folding of the enzyme that is responsible for its activity and allows for its secretion.
Full Text
The Full Text of this article is available as a PDF (154.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beaupoil-Abadie B., Raffalli M., Cozzone P., Marchis-Mouren G. Determination of the carbohydrate content of porcine pancreatic amylase. Biochim Biophys Acta. 1973 Feb 28;297(2):436–440. doi: 10.1016/0304-4165(73)90090-1. [DOI] [PubMed] [Google Scholar]
- Blázquez M., Thiele C., Huttner W. B., Docherty K., Shennan K. I. Involvement of the membrane lipid bilayer in sorting prohormone convertase 2 into the regulated secretory pathway. Biochem J. 2000 Aug 1;349(Pt 3):843–852. doi: 10.1042/bj3490843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brayer G. D., Luo Y., Withers S. G. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995 Sep;4(9):1730–1742. doi: 10.1002/pro.5560040908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 1997 May;7(5):193–200. doi: 10.1016/S0962-8924(97)01032-5. [DOI] [PubMed] [Google Scholar]
- Hagenbüchle O., Bovey R., Young R. A. Tissue-specific expression of mouse-alpha-amylase genes: nucleotide sequence of isoenzyme mRNAs from pancreas and salivary gland. Cell. 1980 Aug;21(1):179–187. doi: 10.1016/0092-8674(80)90125-7. [DOI] [PubMed] [Google Scholar]
- Juge N., Andersen J. S., Tull D., Roepstorff P., Svensson B. Overexpression, purification, and characterization of recombinant barley alpha-amylases 1 and 2 secreted by the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 1996 Sep;8(2):204–214. doi: 10.1006/prep.1996.0093. [DOI] [PubMed] [Google Scholar]
- Kasturi L., Chen H., Shakin-Eshleman S. H. Regulation of N-linked core glycosylation: use of a site-directed mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors. Biochem J. 1997 Apr 15;323(Pt 2):415–419. doi: 10.1042/bj3230415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klausner R. D., Donaldson J. G., Lippincott-Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 1992 Mar;116(5):1071–1080. doi: 10.1083/jcb.116.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knauer R., Lehle L. The oligosaccharyltransferase complex from yeast. Biochim Biophys Acta. 1999 Jan 6;1426(2):259–273. doi: 10.1016/s0304-4165(98)00128-7. [DOI] [PubMed] [Google Scholar]
- Laine J., Beattie M., LeBel D. Kinetic determination of amylase on microtiter plates: an improved substrate. Pancreas. 1996 Aug;13(2):217–217. doi: 10.1097/00006676-199608000-00014. [DOI] [PubMed] [Google Scholar]
- Lainé J., Pelletier G., Grondin G., Peng M., LeBel D. Development of GP-2 and five zymogens in the fetal and young pig: biochemical and immunocytochemical evidence of an atypical zymogen granule composition in the fetus. J Histochem Cytochem. 1996 May;44(5):481–499. doi: 10.1177/44.5.8627005. [DOI] [PubMed] [Google Scholar]
- MacDonald R. J., Crerar M. M., Swain W. F., Pictet R. L., Thomas G., Rutter W. J. Structure of a family of rat amylase genes. Nature. 1980 Sep 11;287(5778):117–122. doi: 10.1038/287117a0. [DOI] [PubMed] [Google Scholar]
- Matthews G., Colman A. A highly efficient, cell-free translation/translocation system prepared from Xenopus eggs. Nucleic Acids Res. 1991 Dec 11;19(23):6405–6412. doi: 10.1093/nar/19.23.6405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellquist J. L., Kasturi L., Spitalnik S. L., Shakin-Eshleman S. H. The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry. 1998 May 12;37(19):6833–6837. doi: 10.1021/bi972217k. [DOI] [PubMed] [Google Scholar]
- Munro S. What can yeast tell us about N-linked glycosylation in the Golgi apparatus? FEBS Lett. 2001 Jun 8;498(2-3):223–227. doi: 10.1016/s0014-5793(01)02488-7. [DOI] [PubMed] [Google Scholar]
- Qian M., Haser R., Payan F. Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution. Protein Sci. 1995 Apr;4(4):747–755. doi: 10.1002/pro.5560040414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian M., Haser R., Payan F. Structure and molecular model refinement of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1993 Jun 5;231(3):785–799. doi: 10.1006/jmbi.1993.1326. [DOI] [PubMed] [Google Scholar]
- Rydberg E. H., Sidhu G., Vo H. C., Hewitt J., Côte H. C., Wang Y., Numao S., MacGillivray R. T., Overall C. M., Brayer G. D. Cloning, mutagenesis, and structural analysis of human pancreatic alpha-amylase expressed in Pichia pastoris. Protein Sci. 1999 Mar;8(3):635–643. doi: 10.1110/ps.8.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders T. G., Rutter W. J. Molecular properties of rat pancreatic and parotid -amylase. Biochemistry. 1972 Jan 4;11(1):130–136. doi: 10.1021/bi00751a022. [DOI] [PubMed] [Google Scholar]
- Scheele G., Bartelt D., Bieger W. Characterization of human exocrine pancreatic proteins by two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis. Gastroenterology. 1981 Mar;80(3):461–473. [PubMed] [Google Scholar]
- Silberstein S., Gilmore R. Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J. 1996 Jun;10(8):849–858. [PubMed] [Google Scholar]
- Strobl S., Maskos K., Betz M., Wiegand G., Huber R., Gomis-Rüth F. X., Glockshuber R. Crystal structure of yellow meal worm alpha-amylase at 1.64 A resolution. J Mol Biol. 1998 May 8;278(3):617–628. doi: 10.1006/jmbi.1998.1667. [DOI] [PubMed] [Google Scholar]
- Takeuchi T. Human amylase isoenzymes separated on concanavalin A--Sepharose. Clin Chem. 1979 Aug;25(8):1406–1410. [PubMed] [Google Scholar]
- Vretblad P. Immobilization of ligands for biospecific affinity chromatography via their hydroxyl groups. The cyclohexaamylose-beta-amylase system. FEBS Lett. 1974 Oct 1;47(1):86–89. doi: 10.1016/0014-5793(74)80431-x. [DOI] [PubMed] [Google Scholar]