Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 1;362(Pt 2):289–296. doi: 10.1042/0264-6021:3620289

Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva.

Bertrand D E Raynal 1, Timothy E Hardingham 1, David J Thornton 1, John K Sheehan 1
PMCID: PMC1222388  PMID: 11853536

Abstract

We have developed a new approach to study the molecular organization of salivary mucus and salivary mucins using confocal fluorescence recovery after photobleaching (confocal-FRAP). MUC5B mucin, its reduced subunit and T-domains were prepared from saliva and fluorescently labelled. The translational self-diffusion coefficients were determined up to 3.6 mg/ml by confocal-FRAP. The results suggest that, in solutions of purified MUC5B mucin, at concentrations at which the hydrodynamic domains overlap, the intermolecular interactions are predominantly due to dynamic entanglements, and there was no evidence of specific self-association of MUC5B mucin, or of its subunits, or T-domains. The analysis of the salivary mucus gel also showed no specific interactions with the purified MUC5B components, but it was much less permeable than expected from its MUC5B content. The saliva was completely permeable to microspheres of 207 nm diameter, but showed size-dependent effects on the diffusion of larger microspheres (499 nm and 711 nm diameter). From these analyses the salivary mucus was shown to be both permeable and dynamic, and with the characteristics of a semi-dilute transient network at physiological concentration. Comparison of the results from saliva and purified MUC5B mucin solutions showed that the network properties of saliva were equivalent to a solution of purified MUC5B mucin of 10-20 times higher concentration. This showed that saliva has additional structure and organization not present in the purified MUC5B mucin and suggests there are other interactions and/or components within saliva that combine with MUC5B to produce its complete properties.

Full Text

The Full Text of this article is available as a PDF (192.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bansil R., Stanley E., LaMont J. T. Mucin biophysics. Annu Rev Physiol. 1995;57:635–657. doi: 10.1146/annurev.ph.57.030195.003223. [DOI] [PubMed] [Google Scholar]
  2. Beeley J. A. Fascinating families of proteins: electrophoresis of human saliva. Biochem Soc Trans. 1993 Feb;21(1):133–138. doi: 10.1042/bst0210133. [DOI] [PubMed] [Google Scholar]
  3. Bobek L. A., Tsai H., Biesbrock A. R., Levine M. J. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J Biol Chem. 1993 Sep 25;268(27):20563–20569. [PubMed] [Google Scholar]
  4. Bromberg L. E., Barr D. P. Self-association of mucin. Biomacromolecules. 2000 Fall;1(3):325–334. doi: 10.1021/bm005532m. [DOI] [PubMed] [Google Scholar]
  5. Buisine M. P., Desseyn J. L., Porchet N., Degand P., Laine A., Aubert J. P. Genomic organization of the 3'-region of the human MUC5AC mucin gene: additional evidence for a common ancestral gene for the 11p15.5 mucin gene family. Biochem J. 1998 Jun 15;332(Pt 3):729–738. doi: 10.1042/bj3320729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlstedt I., Sheehan J. K., Corfield A. P., Gallagher J. T. Mucous glycoproteins: a gel of a problem. Essays Biochem. 1985;20:40–76. [PubMed] [Google Scholar]
  7. Crowther R. S., Marriott C., James S. L. Cation induced changes in the rheological properties of purified mucus glycoprotein gels. Biorheology. 1984;21(1-2):253–263. doi: 10.3233/bir-1984-211-227. [DOI] [PubMed] [Google Scholar]
  8. Desseyn J. L., Aubert J. P., Van Seuningen I., Porchet N., Laine A. Genomic organization of the 3' region of the human mucin gene MUC5B. J Biol Chem. 1997 Jul 4;272(27):16873–16883. doi: 10.1074/jbc.272.27.16873. [DOI] [PubMed] [Google Scholar]
  9. Desseyn J. L., Buisine M. P., Porchet N., Aubert J. P., Laine A. Genomic organization of the human mucin gene MUC5B. cDNA and genomic sequences upstream of the large central exon. J Biol Chem. 1998 Nov 13;273(46):30157–30164. doi: 10.1074/jbc.273.46.30157. [DOI] [PubMed] [Google Scholar]
  10. Desseyn J. L., Guyonnet-Dupérat V., Porchet N., Aubert J. P., Laine A. Human mucin gene MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. Structural evidence for a 11p15.5 gene family. J Biol Chem. 1997 Feb 7;272(6):3168–3178. doi: 10.1074/jbc.272.6.3168. [DOI] [PubMed] [Google Scholar]
  11. Glantz P. O., Wirth S. M., Baier R. E., Wirth J. E. Electron microscopic studies of human mixed saliva. Acta Odontol Scand. 1989 Feb;47(1):7–15. doi: 10.3109/00016358909004794. [DOI] [PubMed] [Google Scholar]
  12. Gribbon P., Hardingham T. E. Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching. Biophys J. 1998 Aug;75(2):1032–1039. doi: 10.1016/S0006-3495(98)77592-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gribbon P., Heng B. C., Hardingham T. E. The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. Biochem J. 2000 Aug 15;350(Pt 1):329–335. [PMC free article] [PubMed] [Google Scholar]
  14. Gribbon P., Heng B. C., Hardingham T. E. The molecular basis of the solution properties of hyaluronan investigated by confocal fluorescence recovery after photobleaching. Biophys J. 1999 Oct;77(4):2210–2216. doi: 10.1016/S0006-3495(99)77061-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harper G. S., Preston B. N. Molecular shrinkage of proteoglycans. J Biol Chem. 1987 Jun 15;262(17):8088–8095. [PubMed] [Google Scholar]
  16. Iontcheva I., Oppenheim F. G., Offner G. D., Troxler R. F. Molecular mapping of statherin- and histatin-binding domains in human salivary mucin MG1 (MUC5B) by the yeast two-hybrid system. J Dent Res. 2000 Feb;79(2):732–739. doi: 10.1177/00220345000790020601. [DOI] [PubMed] [Google Scholar]
  17. Iontcheva I., Oppenheim F. G., Troxler R. F. Human salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins. J Dent Res. 1997 Mar;76(3):734–743. doi: 10.1177/00220345970760030501. [DOI] [PubMed] [Google Scholar]
  18. Kluijtmans SG, Koenderink GH, Philipse AP. Self-diffusion and sedimentation of tracer spheres in (semi)dilute dispersions of rigid colloidal rods. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):626–636. doi: 10.1103/physreve.61.626. [DOI] [PubMed] [Google Scholar]
  19. Kubitscheck U., Wedekind P., Peters R. Lateral diffusion measurement at high spatial resolution by scanning microphotolysis in a confocal microscope. Biophys J. 1994 Sep;67(3):948–956. doi: 10.1016/S0006-3495(94)80596-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu B., Offner G. D., Nunes D. P., Oppenheim F. G., Troxler R. F. MUC4 is a major component of salivary mucin MG1 secreted by the human submandibular gland. Biochem Biophys Res Commun. 1998 Sep 29;250(3):757–761. doi: 10.1006/bbrc.1998.9390. [DOI] [PubMed] [Google Scholar]
  21. Madsen F., Eberth K., Smart J. D. A rheological examination of the mucoadhesive/mucus interaction: the effect of mucoadhesive type and concentration. J Control Release. 1998 Jan 2;50(1-3):167–178. doi: 10.1016/s0168-3659(97)00138-7. [DOI] [PubMed] [Google Scholar]
  22. McCullagh C. M., Jamieson A. M., Blackwell J., Gupta R. Viscoelastic properties of human tracheobronchial mucin in aqueous solution. Biopolymers. 1995 Feb;35(2):149–159. doi: 10.1002/bip.360350203. [DOI] [PubMed] [Google Scholar]
  23. Mehrotra R., Thornton D. J., Sheehan J. K. Isolation and physical characterization of the MUC7 (MG2) mucin from saliva: evidence for self-association. Biochem J. 1998 Sep 1;334(Pt 2):415–422. doi: 10.1042/bj3340415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rayment S. A., Liu B., Offner G. D., Oppenheim F. G., Troxler R. F. Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: factors influencing mucin levels. J Dent Res. 2000 Oct;79(10):1765–1772. doi: 10.1177/00220345000790100601. [DOI] [PubMed] [Google Scholar]
  25. Saltzman W. M., Radomsky M. L., Whaley K. J., Cone R. A. Antibody diffusion in human cervical mucus. Biophys J. 1994 Feb;66(2 Pt 1):508–515. doi: 10.1016/s0006-3495(94)80802-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sellers L. A., Allen A., Morris E. R., Ross-Murphy S. B. Mucus glycoprotein gels. Role of glycoprotein polymeric structure and carbohydrate side-chains in gel-formation. Carbohydr Res. 1988 Jul 15;178:93–110. doi: 10.1016/0008-6215(88)80104-6. [DOI] [PubMed] [Google Scholar]
  27. Sheehan J. K., Carlstedt I. Hydrodynamic properties of human cervical-mucus glycoproteins in 6M-guanidinium chloride. Biochem J. 1984 Jan 1;217(1):93–101. doi: 10.1042/bj2170093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shogren R., Jamieson A. M., Blackwell J., Cheng P. W., Dearborn D. G., Boat T. F. Solution properties of porcine submaxillary mucin. Biopolymers. 1983 Jul;22(7):1657–1675. doi: 10.1002/bip.360220705. [DOI] [PubMed] [Google Scholar]
  29. Soby L. M., Jamieson A. M., Blackwell J., Jentoft N. Viscoelastic properties of solutions of ovine submaxillary mucin. Biopolymers. 1990 Aug 15;29(10-11):1359–1366. doi: 10.1002/bip.360291004. [DOI] [PubMed] [Google Scholar]
  30. Steiner C. A., Litt M., Nossal R. Effect of Ca++ on the structure and rheology of canine tracheal mucin. Biorheology. 1984;21(1-2):235–252. doi: 10.3233/bir-1984-211-226. [DOI] [PubMed] [Google Scholar]
  31. Thornton D. J., Holmes D. F., Sheehan J. K., Carlstedt I. Quantitation of mucus glycoproteins blotted onto nitrocellulose membranes. Anal Biochem. 1989 Oct;182(1):160–164. doi: 10.1016/0003-2697(89)90735-5. [DOI] [PubMed] [Google Scholar]
  32. Thornton D. J., Howard M., Khan N., Sheehan J. K. Identification of two glycoforms of the MUC5B mucin in human respiratory mucus. Evidence for a cysteine-rich sequence repeated within the molecule. J Biol Chem. 1997 Apr 4;272(14):9561–9566. doi: 10.1074/jbc.272.14.9561. [DOI] [PubMed] [Google Scholar]
  33. Thornton D. J., Khan N., Mehrotra R., Howard M., Veerman E., Packer N. H., Sheehan J. K. Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology. 1999 Mar;9(3):293–302. doi: 10.1093/glycob/9.3.293. [DOI] [PubMed] [Google Scholar]
  34. Veerman E. C., Ligtenberg A. J., Schenkels L. C., Walgreen-Weterings E., Nieuw Amerongen A. V. Binding of human high-molecular-weight salivary mucins (MG1) to Hemophilus parainfluenzae. J Dent Res. 1995 Jan;74(1):351–357. doi: 10.1177/00220345950740011101. [DOI] [PubMed] [Google Scholar]
  35. Verdugo P., Aitken M., Langley L., Villalon M. J. Molecular mechanism of product storage and release in mucin secretion. II. The role of extracellular Ca++. Biorheology. 1987;24(6):625–633. doi: 10.3233/bir-1987-24615. [DOI] [PubMed] [Google Scholar]
  36. Verdugo P. Goblet cells secretion and mucogenesis. Annu Rev Physiol. 1990;52:157–176. doi: 10.1146/annurev.ph.52.030190.001105. [DOI] [PubMed] [Google Scholar]
  37. Wickström C., Christersson C., Davies J. R., Carlstedt I. Macromolecular organization of saliva: identification of 'insoluble' MUC5B assemblies and non-mucin proteins in the gel phase. Biochem J. 2000 Oct 15;351(Pt 2):421–428. [PMC free article] [PubMed] [Google Scholar]
  38. Wickström C., Davies J. R., Eriksen G. V., Veerman E. C., Carlstedt I. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J. 1998 Sep 15;334(Pt 3):685–693. doi: 10.1042/bj3340685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wu A. M., Csako G., Herp A. Structure, biosynthesis, and function of salivary mucins. Mol Cell Biochem. 1994 Aug 17;137(1):39–55. doi: 10.1007/BF00926038. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES