Abstract
myo-Inositol hexakisphosphate (IP(6)) is an abundant intracellular component of animal cells. In this study we describe the presence of extracellular IP(6) in the hydatid cyst wall (HCW) of the larval stage of the cestode parasite Echinococcus granulosus. The HCW comprises an inner cellular layer and an outer, acellular (laminated) layer up to 2 mm in thickness that protects the parasite from host immune cells. A compound, subsequently identified as IP(6), was detected in and purified from an HCW extract on the basis of its capacity to inhibit complement activation. The identification of the isolated compound was carried out by a combination of NMR, MS and TLC. The majority of IP(6) in the HCW was found in the acellular layer, with only a small fraction of the compound being extracted from cells. In the laminated layer, IP(6) was present in association with calcium, and accounted for up to 15% of the total dry mass of the HCW. IP(6) was not detected in any other structures or stages of the parasite. Our results imply that IP(6) is secreted by the larval stage of the parasite in a polarized fashion towards the interface with the host. This is the first report of the secretion of IP(6), and the possible implications beyond the biology of E. granulosus are discussed.
Full Text
The Full Text of this article is available as a PDF (234.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali N., Craxton A., Shears S. B. Hepatic Ins(1,3,4,5)P4 3-phosphatase is compartmentalized inside endoplasmic reticulum. J Biol Chem. 1993 Mar 25;268(9):6161–6167. [PubMed] [Google Scholar]
- Araj G. F., Matossian R. M., Frayha G. J. The host response in secondary hydatidosis of mice. I. Circulating antibodies. Z Parasitenkd. 1977 Jun 3;52(1):23–30. doi: 10.1007/BF00380555. [DOI] [PubMed] [Google Scholar]
- Bortoletti G., Ferretti G. Ultrastructural aspects of fertile and sterile cysts of Echinococcus granulosus developed in hosts of different species. Int J Parasitol. 1978 Dec;8(6):421–431. doi: 10.1016/0020-7519(78)90058-9. [DOI] [PubMed] [Google Scholar]
- Bunce C. M., French P. J., Allen P., Mountford J. C., Moor B., Greaves M. F., Michell R. H., Brown G. Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts. Biochem J. 1993 Feb 1;289(Pt 3):667–673. doi: 10.1042/bj2890667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chi H., Yang X., Kingsley P. D., O'Keefe R. J., Puzas J. E., Rosier R. N., Shears S. B., Reynolds P. R. Targeted deletion of Minpp1 provides new insight into the activity of multiple inositol polyphosphate phosphatase in vivo. Mol Cell Biol. 2000 Sep;20(17):6496–6507. doi: 10.1128/mcb.20.17.6496-6507.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Díaz A., Ferreira A., Sim R. B. Complement evasion by Echinococcus granulosus: sequestration of host factor H in the hydatid cyst wall. J Immunol. 1997 Apr 15;158(8):3779–3786. [PubMed] [Google Scholar]
- Díaz A., Ibarguren S., Breijo M., Willis A. C., Sim R. B. Host-derived annexin II at the host-parasite interface of the Echinococcus granulosus hydatid cyst. Mol Biochem Parasitol. 2000 Sep;110(1):171–176. doi: 10.1016/s0166-6851(00)00256-5. [DOI] [PubMed] [Google Scholar]
- Díaz A., Irigoín F., Ferreira F., Sim R. B. Control of host complement activation by the Echinococcus granulosus hydatid cyst. Immunopharmacology. 1999 May;42(1-3):91–98. doi: 10.1016/s0162-3109(99)00023-5. [DOI] [PubMed] [Google Scholar]
- Díaz A., Willis A. C., Sim R. B. Expression of the proteinase specialized in bone resorption, cathepsin K, in granulomatous inflammation. Mol Med. 2000 Aug;6(8):648–659. [PMC free article] [PubMed] [Google Scholar]
- Ferreira A. M., Irigoín F., Breijo M., Sim R. B., Diáz A. How Echinococcus granulosus deals with complement. Parasitol Today. 2000 Apr;16(4):168–172. doi: 10.1016/s0169-4758(99)01625-7. [DOI] [PubMed] [Google Scholar]
- González G., Spinelli P., Lorenzo C., Hellman U., Nieto A., Willis A., Salinas G. Molecular characterization of P-29, a metacestode-specific component of Echinococcus granulosus which is immunologically related to, but distinct from, antigen 5. Mol Biochem Parasitol. 2000 Feb 5;105(2):177–184. doi: 10.1016/s0166-6851(99)00166-8. [DOI] [PubMed] [Google Scholar]
- Guse A. H., Greiner E., Emmrich F., Brand K. Mass changes of inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate during cell cycle progression in rat thymocytes. J Biol Chem. 1993 Apr 5;268(10):7129–7133. [PubMed] [Google Scholar]
- Hanakahi L. A., Bartlet-Jones M., Chappell C., Pappin D., West S. C. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell. 2000 Sep 15;102(6):721–729. doi: 10.1016/s0092-8674(00)00061-1. [DOI] [PubMed] [Google Scholar]
- Handschumacher R. E., Harding M. W., Rice J., Drugge R. J., Speicher D. W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984 Nov 2;226(4674):544–547. doi: 10.1126/science.6238408. [DOI] [PubMed] [Google Scholar]
- Ingold K., Dai W., Rausch R. L., Gottstein B., Hemphill A. Characterization of the laminated layer of in vitro cultivated Echinococcus vogeli metacestodes. J Parasitol. 2001 Feb;87(1):55–64. doi: 10.1645/0022-3395(2001)087[0055:COTLLO]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
- Ingold K., Gottstein B., Hemphill A. High molecular mass glycans are major structural elements associated with the laminated layer of in vitro cultivated Echinococcus multilocularis metacestodes. Int J Parasitol. 2000 Feb;30(2):207–214. doi: 10.1016/s0020-7519(99)00177-0. [DOI] [PubMed] [Google Scholar]
- Irvine R. F., Schell M. J. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol. 2001 May;2(5):327–338. doi: 10.1038/35073015. [DOI] [PubMed] [Google Scholar]
- Jura H., Bader A., Hartmann M., Maschek H., Frosch M. Hepatic tissue culture model for study of host-parasite interactions in alveolar echinococcosis. Infect Immun. 1996 Sep;64(9):3484–3490. doi: 10.1128/iai.64.9.3484-3490.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KILEJIAN A., SAUER K., SCHWABE C. W. Host-parasite relationships in echnoccosis. VIII. Infrared spectra and chemical composition of the hydatid cyst. Exp Parasitol. 1962 Oct;12:377–392. doi: 10.1016/0014-4894(62)90049-8. [DOI] [PubMed] [Google Scholar]
- Lapan E. A. Magnesium inositol hexaphosphate deposits in mesozoan dispersal larvae. Exp Cell Res. 1975 Sep;94(2):277–282. doi: 10.1016/0014-4827(75)90493-0. [DOI] [PubMed] [Google Scholar]
- Lightowlers M. W., Haralambous A., Rickard M. D. Amino acid sequence homology between cyclophilin and a cDNA-cloned antigen of Echinococcus granulosus. Mol Biochem Parasitol. 1989 Oct;36(3):287–289. doi: 10.1016/0166-6851(89)90177-1. [DOI] [PubMed] [Google Scholar]
- Martin J. B., Foray M. F., Klein G., Satre M. Identification of inositol hexaphosphate in 31P-NMR spectra of Dictyostelium discoideum amoebae. Relevance to intracellular pH determination. Biochim Biophys Acta. 1987 Oct 22;931(1):16–25. doi: 10.1016/0167-4889(87)90045-0. [DOI] [PubMed] [Google Scholar]
- Mehrotra B., Myszka D. G., Prestwich G. D. Binding kinetics and ligand specificity for the interactions of the C2B domain of synaptogmin II with inositol polyphosphates and phosphoinositides. Biochemistry. 2000 Aug 15;39(32):9679–9686. doi: 10.1021/bi000487o. [DOI] [PubMed] [Google Scholar]
- Norris F. A., Ungewickell E., Majerus P. W. Inositol hexakisphosphate binds to clathrin assembly protein 3 (AP-3/AP180) and inhibits clathrin cage assembly in vitro. J Biol Chem. 1995 Jan 6;270(1):214–217. doi: 10.1074/jbc.270.1.214. [DOI] [PubMed] [Google Scholar]
- Ongusaha P. P., Hughes P. J., Davey J., Michell R. H. Inositol hexakisphosphate in Schizosaccharomyces pombe: synthesis from Ins(1,4,5)P3 and osmotic regulation. Biochem J. 1998 Nov 1;335(Pt 3):671–679. doi: 10.1042/bj3350671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pittet D., Lew D. P., Mayr G. W., Monod A., Schlegel W. Chemoattractant receptor promotion of Ca2+ influx across the plasma membrane of HL-60 cells. A role for cytosolic free calcium elevations and inositol 1,3,4,5-tetrakisphosphate production. J Biol Chem. 1989 May 5;264(13):7251–7261. [PubMed] [Google Scholar]
- Richards K. S., Arme C., Bridges J. F. Echinococcus granulosus equinus: an ultrastructural study of the laminated layer, including changes on incubating cysts in various media. Parasitology. 1983 Jun;86(Pt 3):399–405. doi: 10.1017/s0031182000050599. [DOI] [PubMed] [Google Scholar]
- Rogan M. T., Richards K. S. Development of the tegument of Echinococcus granulosus (Cestoda) protoscoleces during cystic differentiation in vivo. Parasitol Res. 1989;75(4):299–306. doi: 10.1007/BF00931814. [DOI] [PubMed] [Google Scholar]
- Sadanand A. V. Biochemical analyses of the cyst wall of Echinococcus granulosus Batsch. Comp Biochem Physiol B. 1971 Nov 15;40(3):797–805. doi: 10.1016/0305-0491(71)90153-2. [DOI] [PubMed] [Google Scholar]
- Shears S. B. Assessing the omnipotence of inositol hexakisphosphate. Cell Signal. 2001 Mar;13(3):151–158. doi: 10.1016/s0898-6568(01)00129-2. [DOI] [PubMed] [Google Scholar]
- Sim R. B., Malhotra R. Interactions of carbohydrates and lectins with complement. Biochem Soc Trans. 1994 Feb;22(1):106–111. doi: 10.1042/bst0220106. [DOI] [PubMed] [Google Scholar]
- Smyth J. D., Howkins A. B. An in vitro technique for the production of eggs of Echinococcus granulosus by maturation of partly developed strobila. Parasitology. 1966 Nov;56(4):763–766. doi: 10.1017/s003118200007178x. [DOI] [PubMed] [Google Scholar]
- Stephens L. R., Irvine R. F. Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium. Nature. 1990 Aug 9;346(6284):580–583. doi: 10.1038/346580a0. [DOI] [PubMed] [Google Scholar]
- Stuart J. A., Anderson K. L., French P. J., Kirk C. J., Michell R. H. The intracellular distribution of inositol polyphosphates in HL60 promyeloid cells. Biochem J. 1994 Oct 15;303(Pt 2):517–525. doi: 10.1042/bj3030517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szwergold B. S., Graham R. A., Brown T. R. Observation of inositol pentakis- and hexakis-phosphates in mammalian tissues by 31P NMR. Biochem Biophys Res Commun. 1987 Dec 31;149(3):874–881. doi: 10.1016/0006-291x(87)90489-x. [DOI] [PubMed] [Google Scholar]
- Van der Kaay J., Van Haastert P. J. Desalting inositolpolyphosphates by dialysis. Anal Biochem. 1995 Feb 10;225(1):183–185. doi: 10.1006/abio.1995.1135. [DOI] [PubMed] [Google Scholar]
- Voglmaier S. M., Keen J. H., Murphy J. E., Ferris C. D., Prestwich G. D., Snyder S. H., Theibert A. B. Inositol hexakisphosphate receptor identified as the clathrin assembly protein AP-2. Biochem Biophys Res Commun. 1992 Aug 31;187(1):158–163. doi: 10.1016/s0006-291x(05)81473-1. [DOI] [PubMed] [Google Scholar]
- Ye W., Ali N., Bembenek M. E., Shears S. B., Lafer E. M. Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J Biol Chem. 1995 Jan 27;270(4):1564–1568. [PubMed] [Google Scholar]
- York J. D., Odom A. R., Murphy R., Ives E. B., Wente S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science. 1999 Jul 2;285(5424):96–100. doi: 10.1126/science.285.5424.96. [DOI] [PubMed] [Google Scholar]