Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 1;362(Pt 2):375–382. doi: 10.1042/0264-6021:3620375

Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2.

Cara J Westmark 1, Romi Ghose 1, Paul W Huber 1
PMCID: PMC1222397  PMID: 11853545

Abstract

Transcription factor IIIA (TFIIIA), isolated from the cytoplasmic 7 S ribonucleoprotein complex of Xenopus oocytes, is phosphorylated when incubated with [gamma-(32)P]ATP. This modification is due to a trace kinase activity that remains associated with the factor through several steps of purification. The kinase can use either ATP or GTP, and will phosphorylate casein and phosvitin to the exclusion of TFIIIA. The kinase is reactive with a ten-amino-acid peptide that is a specific substrate for protein kinase CK2 (CK2; formerly casein kinase II). In addition, inhibition of phosphorylation by heparin and stimulation by spermidine indicate that the activity can be ascribed to CK2. Phospho amino acid analysis established that serine is the sole phosphoryl acceptor in TFIIIA. There are four consensus sites for CK2 in TFIIIA; all contain serine residues at the putative site of phosphorylation. TFIIIA immunoprecipitated from oocytes, which were incubated with [(32)P]orthophosphate, is also phosphorylated exclusively on serine residues. Only the cyanogen bromide fragment, which was derived from the N-terminal end of TFIIIA, is labelled in vivo. A recognition sequence for CK2, located at Ser(16) in the beta-turn of the first zinc-finger domain, is the only protein kinase consensus sequence present in this peptide. Assays in vitro with site-specific mutants of TFIIIA established that Ser(16) is the preferred site of phosphorylation, with some secondary modification at Ser(314).

Full Text

The Full Text of this article is available as a PDF (260.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allende J. E., Allende C. C. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 1995 Mar;9(5):313–323. doi: 10.1096/fasebj.9.5.7896000. [DOI] [PubMed] [Google Scholar]
  2. Bieker J. J., Roeder R. G. Physical properties and DNA-binding stoichiometry of a 5 S gene-specific transcription factor. J Biol Chem. 1984 May 25;259(10):6158–6164. [PubMed] [Google Scholar]
  3. Birkenmeier E. H., Brown D. D., Jordan E. A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes. Cell. 1978 Nov;15(3):1077–1086. doi: 10.1016/0092-8674(78)90291-x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brown T. R., Scott P. H., Stein T., Winter A. G., White R. J. RNA polymerase III transcription: its control by tumor suppressors and its deregulation by transforming agents. Gene Expr. 2000;9(1-2):15–28. doi: 10.3727/000000001783992713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chipev C. C., Wolffe A. P. Chromosomal organization of Xenopus laevis oocyte and somatic 5S rRNA genes in vivo. Mol Cell Biol. 1992 Jan;12(1):45–55. doi: 10.1128/mcb.12.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Conesa C., Swanson R. N., Schultz P., Oudet P., Sentenac A. On the subunit composition, stoichiometry, and phosphorylation of the yeast transcription factor TFIIIC/tau. J Biol Chem. 1993 Aug 25;268(24):18047–18052. [PubMed] [Google Scholar]
  9. Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
  10. Cummings A., Sommerville J. Protein kinase activity associated with stored messenger ribonucleoprotein particles of Xenopus oocytes. J Cell Biol. 1988 Jul;107(1):45–56. doi: 10.1083/jcb.107.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Del Río S., Setzer D. R. High yield purification of active transcription factor IIIA expressed in E. coli. Nucleic Acids Res. 1991 Nov 25;19(22):6197–6203. doi: 10.1093/nar/19.22.6197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Deschamps S., Jacquemin-Sablon H., Triqueneaux G., Mulner-Lorillon O., Potier M., Le Caer J. P., Dautry F., le Maire M. mRNP3 and mRNP4 are phosphorylatable by casein kinase II in Xenopus oocytes, but phosphorylation does not modify RNA-binding affinity. FEBS Lett. 1997 Aug 4;412(3):495–500. doi: 10.1016/s0014-5793(97)00833-8. [DOI] [PubMed] [Google Scholar]
  13. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  14. Engelke D. R., Gottesfeld J. M. Chromosomal footprinting of transcriptionally active and inactive oocyte-type 5S RNA genes of Xenopus laevis. Nucleic Acids Res. 1990 Oct 25;18(20):6031–6037. doi: 10.1093/nar/18.20.6031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Engelke D. R., Ng S. Y., Shastry B. S., Roeder R. G. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell. 1980 Mar;19(3):717–728. doi: 10.1016/s0092-8674(80)80048-1. [DOI] [PubMed] [Google Scholar]
  16. Fan H., Sakulich A. L., Goodier J. L., Zhang X., Qin J., Maraia R. J. Phosphorylation of the human La antigen on serine 366 can regulate recycling of RNA polymerase III transcription complexes. Cell. 1997 Mar 7;88(5):707–715. doi: 10.1016/s0092-8674(00)81913-3. [DOI] [PubMed] [Google Scholar]
  17. Gatica M., Allende C. C., Allende J. E. Nucleic acids can regulate the activity of casein kinase II. FEBS Lett. 1989 Sep 25;255(2):414–418. doi: 10.1016/0014-5793(89)81135-4. [DOI] [PubMed] [Google Scholar]
  18. Ghavidel A., Hockman D. J., Schultz M. C. A review of progress towards elucidating the role of protein kinase CK2 in polymerase III transcription: regulation of the TATA binding protein. Mol Cell Biochem. 1999 Jan;191(1-2):143–148. [PubMed] [Google Scholar]
  19. Ghavidel A., Schultz M. C. Casein kinase II regulation of yeast TFIIIB is mediated by the TATA-binding protein. Genes Dev. 1997 Nov 1;11(21):2780–2789. doi: 10.1101/gad.11.21.2780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Glikin G. C., Ruberti I., Worcel A. Chromatin assembly in Xenopus oocytes: in vitro studies. Cell. 1984 May;37(1):33–41. doi: 10.1016/0092-8674(84)90298-8. [DOI] [PubMed] [Google Scholar]
  21. Gottesfeld J. M., Forbes D. J. Mitotic repression of the transcriptional machinery. Trends Biochem Sci. 1997 Jun;22(6):197–202. doi: 10.1016/s0968-0004(97)01045-1. [DOI] [PubMed] [Google Scholar]
  22. Gottesfeld J. M., Wolf V. J., Dang T., Forbes D. J., Hartl P. Mitotic repression of RNA polymerase III transcription in vitro mediated by phosphorylation of a TFIIIB component. Science. 1994 Jan 7;263(5143):81–84. doi: 10.1126/science.8272869. [DOI] [PubMed] [Google Scholar]
  23. Hanas J. S., Bogenhagen D. F., Wu C. W. Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2142–2145. doi: 10.1073/pnas.80.8.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hazuda D. J., Wu C. W. DNA-activated ATPase activity associated with Xenopus transcription factor A. J Biol Chem. 1986 Sep 15;261(26):12202–12208. [PubMed] [Google Scholar]
  25. Hockman D. J., Schultz M. C. Casein kinase II is required for efficient transcription by RNA polymerase III. Mol Cell Biol. 1996 Mar;16(3):892–898. doi: 10.1128/mcb.16.3.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hoeffler W. K., Kovelman R., Roeder R. G. Activation of transcription factor IIIC by the adenovirus E1A protein. Cell. 1988 Jun 17;53(6):907–920. doi: 10.1016/s0092-8674(88)90409-6. [DOI] [PubMed] [Google Scholar]
  27. Holcomb E. R., Friedman D. L. Phosphorylation of the C-proteins of HeLa cell hnRNP particles. Involvement of a casein kinase II-type enzyme. J Biol Chem. 1984 Jan 10;259(1):31–40. [PubMed] [Google Scholar]
  28. Honda B. M., Roeder R. G. Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell. 1980 Nov;22(1 Pt 1):119–126. doi: 10.1016/0092-8674(80)90160-9. [DOI] [PubMed] [Google Scholar]
  29. Huber P. W., Wool I. G. Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease alpha-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):322–326. doi: 10.1073/pnas.81.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kandror K. V., Stepanov A. S. RNA-binding protein kinase from amphibian oocytes is a casein kinase II. FEBS Lett. 1984 May 7;170(1):33–37. doi: 10.1016/0014-5793(84)81363-0. [DOI] [PubMed] [Google Scholar]
  31. Kim J. M., Cha J. Y., Marshak D. R., Bae Y. S. Interaction of the beta subunit of casein kinase II with the ribosomal protein L5. Biochem Biophys Res Commun. 1996 Sep 4;226(1):180–186. doi: 10.1006/bbrc.1996.1330. [DOI] [PubMed] [Google Scholar]
  32. Kuchino Y., Hanyu N., Nishimura S. Analysis of modified nucleosides and nucleotide sequence of tRNA. Methods Enzymol. 1987;155:379–396. doi: 10.1016/0076-6879(87)55026-1. [DOI] [PubMed] [Google Scholar]
  33. Kuenzel E. A., Krebs E. G. A synthetic peptide substrate specific for casein kinase II. Proc Natl Acad Sci U S A. 1985 Feb;82(3):737–741. doi: 10.1073/pnas.82.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  35. Lassar A. B., Martin P. L., Roeder R. G. Transcription of class III genes: formation of preinitiation complexes. Science. 1983 Nov 18;222(4625):740–748. doi: 10.1126/science.6356356. [DOI] [PubMed] [Google Scholar]
  36. McConkey G. A., Bogenhagen D. F. TFIIIA binds with equal affinity to somatic and major oocyte 5S RNA genes. Genes Dev. 1988 Feb;2(2):205–214. doi: 10.1101/gad.2.2.205. [DOI] [PubMed] [Google Scholar]
  37. McDonald O. B., Merrill B. M., Bland M. M., Taylor L. C., Sahyoun N. Site and consequences of the autophosphorylation of Ca2+/calmodulin-dependent protein kinase type "Gr". J Biol Chem. 1993 May 15;268(14):10054–10059. [PubMed] [Google Scholar]
  38. Mulner-Lorillon O., Marot J., Cayla X., Pouhle R., Belle R. Purification and characterization of a casein-kinase-II-type enzyme from Xenopus laevis ovary. Biological effects on the meiotic cell division of full-grown oocyte. Eur J Biochem. 1988 Jan 15;171(1-2):107–117. doi: 10.1111/j.1432-1033.1988.tb13765.x. [DOI] [PubMed] [Google Scholar]
  39. Park J. W., Bae Y. S. Phosphorylation of ribosomal protein L5 by protein kinase CKII decreases its 5S rRNA binding activity. Biochem Biophys Res Commun. 1999 Sep 24;263(2):475–481. doi: 10.1006/bbrc.1999.1345. [DOI] [PubMed] [Google Scholar]
  40. Pelham H. R., Brown D. D. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4170–4174. doi: 10.1073/pnas.77.7.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pinna L. A. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim Biophys Acta. 1990 Sep 24;1054(3):267–284. doi: 10.1016/0167-4889(90)90098-x. [DOI] [PubMed] [Google Scholar]
  42. Rawlings S. L., Matt G. D., Huber P. W. Analysis of the binding of Xenopus transcription factor IIIA to oocyte 5 S rRNA and to the 5 S rRNA gene. J Biol Chem. 1996 Jan 12;271(2):868–877. doi: 10.1074/jbc.271.2.869. [DOI] [PubMed] [Google Scholar]
  43. Reynolds W. F. The tyrosine phosphatase cdc25 selectively inhibits transcription of the Xenopus oocyte-type tRNAtyrC gene. Nucleic Acids Res. 1993 Sep 11;21(18):4372–4377. doi: 10.1093/nar/21.18.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  45. Shastry B. S., Honda B. M., Roeder R. G. Altered levels of a 5 S gene-specific transcription factor (TFIIIA) during oogenesis and embryonic development of Xenopus laevis. J Biol Chem. 1984 Sep 25;259(18):11373–11382. [PubMed] [Google Scholar]
  46. Smith D. R., Jackson I. J., Brown D. D. Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell. 1984 Jun;37(2):645–652. doi: 10.1016/0092-8674(84)90396-9. [DOI] [PubMed] [Google Scholar]
  47. Stepanov A. S., Kandror K. V., Elizarov S. M. Protein kinase activity in RNA-binding proteins of Amphibia oocytes. FEBS Lett. 1982 May 17;141(2):157–160. doi: 10.1016/0014-5793(82)80036-7. [DOI] [PubMed] [Google Scholar]
  48. Taylor W., Jackson I. J., Siegel N., Kumar A., Brown D. D. The developmental expression of the gene for TFIIIA in Xenopus laevis. Nucleic Acids Res. 1986 Aug 11;14(15):6185–6195. doi: 10.1093/nar/14.15.6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. White R. J., Stott D., Rigby P. W. Regulation of RNA polymerase III transcription in response to Simian virus 40 transformation. EMBO J. 1990 Nov;9(11):3713–3721. doi: 10.1002/j.1460-2075.1990.tb07584.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Whitmarsh A. J., Davis R. J. Regulation of transcription factor function by phosphorylation. Cell Mol Life Sci. 2000 Aug;57(8-9):1172–1183. doi: 10.1007/PL00000757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wilhelm V., Rojas P., Gatica M., Allende C. C., Allende J. E. Expression of the subunits of protein kinase CK2 during oogenesis in Xenopus laevis. Eur J Biochem. 1995 Sep 1;232(2):671–676. doi: 10.1111/j.1432-1033.1995.671zz.x. [DOI] [PubMed] [Google Scholar]
  52. Wolffe A. P., Brown D. D. Developmental regulation of two 5S ribosomal RNA genes. Science. 1988 Sep 23;241(4873):1626–1632. doi: 10.1126/science.241.4873.1626. [DOI] [PubMed] [Google Scholar]
  53. Wolffe A. P., Brown D. D. Differential 5S RNA gene expression in vitro. Cell. 1987 Dec 4;51(5):733–740. doi: 10.1016/0092-8674(87)90096-1. [DOI] [PubMed] [Google Scholar]
  54. Wolffe A. P. Transcription fraction TFIIIC can regulate differential Xenopus 5S RNA gene transcription in vitro. EMBO J. 1988 Apr;7(4):1071–1079. doi: 10.1002/j.1460-2075.1988.tb02915.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES