Abstract
Manganese superoxide dismutase (MnSOD) plays an important role in regulating cellular redox conditions. Expression of MnSOD has been shown to protect against damage by oxidative stress and to suppress the malignant phenotype of human cancer cells. We have previously cloned the human MnSOD (SOD2) gene and analysed its 5' proximal promoter, which has been characterized by a lack of a TATA or CAAT box and the presence of multiple GC boxes. To define further the molecular mechanisms for the regulation of MnSOD expression, multiple transcription factor-binding motifs containing overlapping specificity protein 1 (Sp1)- and activator protein (AP)-2-binding sites were identified by DNase I footprinting analysis. Functional studies in three cell lines with different levels of Sp1 and AP-2 proteins suggested that the cellular levels of these proteins may differentially regulate transcription via GC-binding motifs in the human SOD2 promoter. Co-transfection of an Sp1 expression vector resulted in an increase in the transcription of the promoter-driven reporter gene. In contrast, co-transfection of the AP-2 expression vector caused a decrease in transcription. Direct mutagenesis analysis of Sp1- and AP-2-binding sites showed that Sp1 is essential for transcription of the human SOD2 gene, whereas AP-2 plays a negative role in the transcription. Immunoprecipitation of Sp1 and AP-2 proteins demonstrated that Sp1 interacts with AP-2 in vivo. Two-hybrid analysis revealed that interaction between Sp1 and AP-2 plays both a positive and negative role in the transcription of the reporter gene in vivo. Taken together, our data indicate that AP-2 down-regulates transcription of the human SOD2 gene via its interaction with Sp1 within the promoter region. These findings, coupled with our previous observation that several cancer cell lines have mutations in the promoter region of the human MnSOD gene, which lead to an increase in an AP-2-binding site and a decrease in the promoter activity, signal the importance of understanding the promoter structure and the regulation of the human SOD2 gene by Sp1 and AP-2.
Full Text
The Full Text of this article is available as a PDF (305.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker D. L., Dave V., Reed T., Periasamy M. Multiple Sp1 binding sites in the cardiac/slow twitch muscle sarcoplasmic reticulum Ca2+-ATPase gene promoter are required for expression in Sol8 muscle cells. J Biol Chem. 1996 Mar 8;271(10):5921–5928. doi: 10.1074/jbc.271.10.5921. [DOI] [PubMed] [Google Scholar]
- Benson L. Q., Coon M. R., Krueger L. M., Han G. C., Sarnaik A. A., Wechsler D. S. Expression of MXI1, a Myc antagonist, is regulated by Sp1 and AP2. J Biol Chem. 1999 Oct 1;274(40):28794–28802. doi: 10.1074/jbc.274.40.28794. [DOI] [PubMed] [Google Scholar]
- Briggs M. R., Kadonaga J. T., Bell S. P., Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science. 1986 Oct 3;234(4772):47–52. doi: 10.1126/science.3529394. [DOI] [PubMed] [Google Scholar]
- Carlioz A., Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 1986 Mar;5(3):623–630. doi: 10.1002/j.1460-2075.1986.tb04256.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen T. T., Wu R. L., Castro-Munozledo F., Sun T. T. Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells. Mol Cell Biol. 1997 Jun;17(6):3056–3064. doi: 10.1128/mcb.17.6.3056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen H. T., Bossone S. A., Zhu G., McDonald G. A., Sukhatme V. P. Sp1 is a critical regulator of the Wilms' tumor-1 gene. J Biol Chem. 1997 Jan 31;272(5):2901–2913. doi: 10.1074/jbc.272.5.2901. [DOI] [PubMed] [Google Scholar]
- Courey A. J., Holtzman D. A., Jackson S. P., Tjian R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell. 1989 Dec 1;59(5):827–836. doi: 10.1016/0092-8674(89)90606-5. [DOI] [PubMed] [Google Scholar]
- Courey A. J., Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. doi: 10.1016/0092-8674(88)90144-4. [DOI] [PubMed] [Google Scholar]
- Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dynan W. S., Tjian R. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell. 1983 Mar;32(3):669–680. doi: 10.1016/0092-8674(83)90053-3. [DOI] [PubMed] [Google Scholar]
- Dynan W. S., Tjian R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell. 1983 Nov;35(1):79–87. doi: 10.1016/0092-8674(83)90210-6. [DOI] [PubMed] [Google Scholar]
- Ferrante R. J., Browne S. E., Shinobu L. A., Bowling A. C., Baik M. J., MacGarvey U., Kowall N. W., Brown R. H., Jr, Beal M. F. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997 Nov;69(5):2064–2074. doi: 10.1046/j.1471-4159.1997.69052064.x. [DOI] [PubMed] [Google Scholar]
- Finkel T., Duc J., Fearon E. R., Dang C. V., Tomaselli G. F. Detection and modulation in vivo of helix-loop-helix protein-protein interactions. J Biol Chem. 1993 Jan 5;268(1):5–8. [PubMed] [Google Scholar]
- Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
- Getman D. K., Mutero A., Inoue K., Taylor P. Transcription factor repression and activation of the human acetylcholinesterase gene. J Biol Chem. 1995 Oct 6;270(40):23511–23519. doi: 10.1074/jbc.270.40.23511. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Zulueta M., Ensz L. M., Mukhina G., Lebovitz R. M., Zwacka R. M., Engelhardt J. F., Oberley L. W., Dawson V. L., Dawson T. M. Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci. 1998 Mar 15;18(6):2040–2055. doi: 10.1523/JNEUROSCI.18-06-02040.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halliwell B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis. 1993 Mar;23 (Suppl 1):118–126. doi: 10.1159/000216921. [DOI] [PubMed] [Google Scholar]
- Ho Y. S., Howard A. J., Crapo J. D. Molecular structure of a functional rat gene for manganese-containing superoxide dismutase. Am J Respir Cell Mol Biol. 1991 Mar;4(3):278–286. doi: 10.1165/ajrcmb/4.3.278. [DOI] [PubMed] [Google Scholar]
- Huang Y., Domann F. E. Transcription factor AP-2 mRNA and DNA binding activity are constitutively expressed in SV40-immortalized but not normal human lung fibroblasts. Arch Biochem Biophys. 1999 Apr 15;364(2):241–246. doi: 10.1006/abbi.1999.1142. [DOI] [PubMed] [Google Scholar]
- Jones P. L., Kucera G., Gordon H., Boss J. M. Cloning and characterization of the murine manganous superoxide dismutase-encoding gene. Gene. 1995 Feb 14;153(2):155–161. doi: 10.1016/0378-1119(94)00666-g. [DOI] [PubMed] [Google Scholar]
- Keller J. N., Kindy M. S., Holtsberg F. W., St Clair D. K., Yen H. C., Germeyer A., Steiner S. M., Bruce-Keller A. J., Hutchins J. B., Mattson M. P. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci. 1998 Jan 15;18(2):687–697. doi: 10.1523/JNEUROSCI.18-02-00687.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiningham K. K., Oberley T. D., Lin S., Mattingly C. A., St Clair D. K. Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly(ADP-ribose) polymerase-mediated cell death. FASEB J. 1999 Sep;13(12):1601–1610. doi: 10.1096/fasebj.13.12.1601. [DOI] [PubMed] [Google Scholar]
- Kiningham K. K., St Clair D. K. Overexpression of manganese superoxide dismutase selectively modulates the activity of Jun-associated transcription factors in fibrosarcoma cells. Cancer Res. 1997 Dec 1;57(23):5265–5271. [PubMed] [Google Scholar]
- Ku H. H., Brunk U. T., Sohal R. S. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med. 1993 Dec;15(6):621–627. doi: 10.1016/0891-5849(93)90165-q. [DOI] [PubMed] [Google Scholar]
- Lebovitz R. M., Zhang H., Vogel H., Cartwright J., Jr, Dionne L., Lu N., Huang S., Matzuk M. M. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9782–9787. doi: 10.1073/pnas.93.18.9782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee W., Haslinger A., Karin M., Tjian R. Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature. 1987 Jan 22;325(6102):368–372. doi: 10.1038/325368a0. [DOI] [PubMed] [Google Scholar]
- Li Y., Huang T. T., Carlson E. J., Melov S., Ursell P. C., Olson J. L., Noble L. J., Yoshimura M. P., Berger C., Chan P. H. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995 Dec;11(4):376–381. doi: 10.1038/ng1295-376. [DOI] [PubMed] [Google Scholar]
- López-Rodríguez C., Botella L., Corbí A. L. CCAAT-enhancer-binding proteins (C/EBP) regulate the tissue specific activity of the CD11c integrin gene promoter through functional interactions with Sp1 proteins. J Biol Chem. 1997 Nov 14;272(46):29120–29126. doi: 10.1074/jbc.272.46.29120. [DOI] [PubMed] [Google Scholar]
- Majima H. J., Oberley T. D., Furukawa K., Mattson M. P., Yen H. C., Szweda L. I., St Clair D. K. Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J Biol Chem. 1998 Apr 3;273(14):8217–8224. doi: 10.1074/jbc.273.14.8217. [DOI] [PubMed] [Google Scholar]
- Manna S. K., Zhang H. J., Yan T., Oberley L. W., Aggarwal B. B. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J Biol Chem. 1998 May 22;273(21):13245–13254. doi: 10.1074/jbc.273.21.13245. [DOI] [PubMed] [Google Scholar]
- Matsuda Y., Higashiyama S., Kijima Y., Suzuki K., Kawano K., Akiyama M., Kawata S., Tarui S., Deutsch H. F., Taniguchi N. Human liver manganese superoxide dismutase. Purification and crystallization, subunit association and sulfhydryl reactivity. Eur J Biochem. 1990 Dec 27;194(3):713–720. doi: 10.1111/j.1432-1033.1990.tb19461.x. [DOI] [PubMed] [Google Scholar]
- Meyrick B., Magnuson M. A. Identification and functional characterization of the bovine manganous superoxide dismutase promoter. Am J Respir Cell Mol Biol. 1994 Jan;10(1):113–121. doi: 10.1165/ajrcmb.10.1.8292376. [DOI] [PubMed] [Google Scholar]
- Mitchell P. J., Timmons P. M., Hébert J. M., Rigby P. W., Tjian R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 1991 Jan;5(1):105–119. doi: 10.1101/gad.5.1.105. [DOI] [PubMed] [Google Scholar]
- Mitchell P. J., Wang C., Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. doi: 10.1016/0092-8674(87)90512-5. [DOI] [PubMed] [Google Scholar]
- Moffat G. J., McLaren A. W., Wolf C. R. Sp1-mediated transcriptional activation of the human Pi class glutathione S-transferase promoter. J Biol Chem. 1996 Jan 12;271(2):1054–1060. doi: 10.1074/jbc.271.2.1054. [DOI] [PubMed] [Google Scholar]
- Pena P., Reutens A. T., Albanese C., D'Amico M., Watanabe G., Donner A., Shu I. W., Williams T., Pestell R. G. Activator protein-2 mediates transcriptional activation of the CYP11A1 gene by interaction with Sp1 rather than binding to DNA. Mol Endocrinol. 1999 Aug;13(8):1402–1416. doi: 10.1210/mend.13.8.0335. [DOI] [PubMed] [Google Scholar]
- Perkins N. D., Edwards N. L., Duckett C. S., Agranoff A. B., Schmid R. M., Nabel G. J. A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J. 1993 Sep;12(9):3551–3558. doi: 10.1002/j.1460-2075.1993.tb06029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang W., Keesler G. A., Tabas I. The structure of the gene for murine CTP:phosphocholine cytidylyltransferase, Ctpct. Relationship of exon structure to functional domains and identification of transcriptional start sites and potential upstream regulatory elements. J Biol Chem. 1997 May 16;272(20):13146–13151. doi: 10.1074/jbc.272.20.13146. [DOI] [PubMed] [Google Scholar]
- Wan X. S., Devalaraja M. N., St Clair D. K. Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol. 1994 Nov;13(11):1127–1136. doi: 10.1089/dna.1994.13.1127. [DOI] [PubMed] [Google Scholar]
- Wang D., Shin T. H., Kudlow J. E. Transcription factor AP-2 controls transcription of the human transforming growth factor-alpha gene. J Biol Chem. 1997 May 30;272(22):14244–14250. doi: 10.1074/jbc.272.22.14244. [DOI] [PubMed] [Google Scholar]
- Williams T., Admon A., Lüscher B., Tjian R. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev. 1988 Dec;2(12A):1557–1569. doi: 10.1101/gad.2.12a.1557. [DOI] [PubMed] [Google Scholar]
- Williams T., Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev. 1991 Apr;5(4):670–682. doi: 10.1101/gad.5.4.670. [DOI] [PubMed] [Google Scholar]
- Wispé J. R., Warner B. B., Clark J. C., Dey C. R., Neuman J., Glasser S. W., Crapo J. D., Chang L. Y., Whitsett J. A. Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem. 1992 Nov 25;267(33):23937–23941. [PubMed] [Google Scholar]
- Wong G. H., Elwell J. H., Oberley L. W., Goeddel D. V. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell. 1989 Sep 8;58(5):923–931. doi: 10.1016/0092-8674(89)90944-6. [DOI] [PubMed] [Google Scholar]
- Xie W. F., Kondo S., Sandell L. J. Regulation of the mouse cartilage-derived retinoic acid-sensitive protein gene by the transcription factor AP-2. J Biol Chem. 1998 Feb 27;273(9):5026–5032. doi: 10.1074/jbc.273.9.5026. [DOI] [PubMed] [Google Scholar]
- Xu Y., Kiningham K. K., Devalaraja M. N., Yeh C. C., Majima H., Kasarskis E. J., St Clair D. K. An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA Cell Biol. 1999 Sep;18(9):709–722. doi: 10.1089/104454999314999. [DOI] [PubMed] [Google Scholar]
- Xu Y., Krishnan A., Wan X. S., Majima H., Yeh C. C., Ludewig G., Kasarskis E. J., St Clair D. K. Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene. 1999 Jan 7;18(1):93–102. doi: 10.1038/sj.onc.1202265. [DOI] [PubMed] [Google Scholar]
- Yeh C. C., Wan X. S., St Clair D. K. Transcriptional regulation of the 5' proximal promoter of the human manganese superoxide dismutase gene. DNA Cell Biol. 1998 Nov;17(11):921–930. doi: 10.1089/dna.1998.17.921. [DOI] [PubMed] [Google Scholar]
- Yen H. C., Oberley T. D., Vichitbandha S., Ho Y. S., St Clair D. K. The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest. 1996 Sep 1;98(5):1253–1260. doi: 10.1172/JCI118909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu C. H., Huang Y., Oberley L. W., Domann F. E. A family of AP-2 proteins down-regulate manganese superoxide dismutase expression. J Biol Chem. 2001 Jan 26;276(17):14407–14413. doi: 10.1074/jbc.M009708200. [DOI] [PubMed] [Google Scholar]
- Zhu C., Huang Y., Weydert C. J., Oberley L. W., Domann F. E. Constitutive activation of transcription factor AP-2 is associated with decreased MnSOD expression in transformed human lung fibroblasts. Antioxid Redox Signal. 2001 Jun;3(3):387–395. doi: 10.1089/15230860152409031. [DOI] [PubMed] [Google Scholar]