Abstract
Bovine aortic endothelial and smooth-muscle cells down-regulate the rate of glucose transport in the face of hyperglycaemia, thus providing protection against deleterious effects of increased intracellular glucose levels. When exposed to high glucose concentrations these cells reduced the mRNA and protein content of their typical glucose transporter, GLUT-1, as well as its plasma-membrane abundance. Inhibition of the lipoxygenase (LO) pathway, and particularly 12-LO, reversed this glucose-induced down-regulatory process and restored the rate of hexose transport to the level seen in vascular cells exposed to normal glucose levels. This reversal was accompanied by increased levels of GLUT-1 mRNA and protein, as well as of its plasma-membrane content. Exposure of the vascular cells to elevated glucose concentrations increased by 2-3-fold the levels of cell-associated and secreted 12-hydroxyeicosatetraenoic acid (12-HETE), the product of 12-LO. Inhibition of 15- and 5-LO, cyclo-oxygenases 1 and 2, and eicosanoid-producing cytochrome P450 did not modify the hexose-transport system in vascular cells. These results suggest a role for HETEs in the autoregulation of hexose transport in vascular cells. 8-Iso prostaglandin F(2alpha), a non-enzymic oxidation product of arachidonic acid, had no effect on the hexose-transport system in vascular cells exposed to hyperglycaemic conditions. Taken together, these findings show that hyperglycaemia increases the production rate of 12-HETE, which in turn mediates the down-regulation of GLUT-1 expression and the glucose-transport system in vascular endothelial and smooth-muscle cells.
Full Text
The Full Text of this article is available as a PDF (296.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antonipillai I., Jost-Vu E., Natarajan R., Nadler J., Horton R. Renin response to 12-hydroxyeicosatetraenoic acid is increased in diabetic rats. Diabetes. 1995 Mar;44(3):321–325. doi: 10.2337/diab.44.3.321. [DOI] [PubMed] [Google Scholar]
- Antonipillai I., Nadler J., Vu E. J., Bughi S., Natarajan R., Horton R. A 12-lipoxygenase product, 12-hydroxyeicosatetraenoic acid, is increased in diabetics with incipient and early renal disease. J Clin Endocrinol Metab. 1996 May;81(5):1940–1945. doi: 10.1210/jcem.81.5.8626861. [DOI] [PubMed] [Google Scholar]
- Beno D. W., Mullen J., Davis B. H. Lipoxygenase inhibitors block PDGF-induced mitogenesis: a MAPK-independent mechanism that blocks fos and egr. Am J Physiol. 1995 Mar;268(3 Pt 1):C604–C610. doi: 10.1152/ajpcell.1995.268.3.C604. [DOI] [PubMed] [Google Scholar]
- Brinkman H. J., van Buul-Wortelboer M. F., van Mourik J. A. Selective conversion and esterification of monohydroxyeicosatetraenoic acids by human vascular smooth muscle cells: relevance to smooth muscle cell proliferation. Exp Cell Res. 1991 Jan;192(1):87–92. doi: 10.1016/0014-4827(91)90161-m. [DOI] [PubMed] [Google Scholar]
- Brown M. L., Jakubowski J. A., Leventis L. L., Deykin D. Elevated glucose alters eicosanoid release from porcine aortic endothelial cells. J Clin Invest. 1988 Dec;82(6):2136–2141. doi: 10.1172/JCI113835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capdevila J., Marnett L. J., Chacos N., Prough R. A., Estabrook R. W. Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyicosatetraenoic acids. Proc Natl Acad Sci U S A. 1982 Feb;79(3):767–770. doi: 10.1073/pnas.79.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper D. R., Khalakdina A., Watson J. E. Chronic effects of glucose on insulin signaling in A-10 vascular smooth muscle cells. Arch Biochem Biophys. 1993 May;302(2):490–498. doi: 10.1006/abbi.1993.1244. [DOI] [PubMed] [Google Scholar]
- Dai F. X., Diederich A., Skopec J., Diederich D. Diabetes-induced endothelial dysfunction in streptozotocin-treated rats: role of prostaglandin endoperoxides and free radicals. J Am Soc Nephrol. 1993 Dec;4(6):1327–1336. doi: 10.1681/ASN.V461327. [DOI] [PubMed] [Google Scholar]
- Facino R. M., Carini M., Aldini G. Antioxidant activity of nimesulide and its main metabolites. Drugs. 1993;46 (Suppl 1):15–21. doi: 10.2165/00003495-199300461-00005. [DOI] [PubMed] [Google Scholar]
- Funk C. D., Furci L., Fitzgerald G. A. Molecular cloning of the human platelet 12-lipoxygenase. Trans Assoc Am Physicians. 1990;103:180–186. [PubMed] [Google Scholar]
- Gillard J., Ford-Hutchinson A. W., Chan C., Charleson S., Denis D., Foster A., Fortin R., Leger S., McFarlane C. S., Morton H. L-663,536 (MK-886) (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2 - dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol. 1989 May;67(5):456–464. doi: 10.1139/y89-073. [DOI] [PubMed] [Google Scholar]
- Herbertsson H., Kühme T., Hammarström S. A 12(S)-HETE receptor in Lewis lung carcinoma cells. Adv Exp Med Biol. 1999;447:193–198. doi: 10.1007/978-1-4615-4861-4_18. [DOI] [PubMed] [Google Scholar]
- Honda H. M., Leitinger N., Frankel M., Goldhaber J. I., Natarajan R., Nadler J. L., Weiss J. N., Berliner J. A. Induction of monocyte binding to endothelial cells by MM-LDL: role of lipoxygenase metabolites. Arterioscler Thromb Vasc Biol. 1999 Mar;19(3):680–686. doi: 10.1161/01.atv.19.3.680. [DOI] [PubMed] [Google Scholar]
- Huang H. C., Hsieh L. M., Chen H. W., Lin Y. S., Chen J. S. Effects of baicalein and esculetin on transduction signals and growth factors expression in T-lymphoid leukemia cells. Eur J Pharmacol. 1994 Jun 15;268(1):73–78. doi: 10.1016/0922-4106(94)90121-x. [DOI] [PubMed] [Google Scholar]
- Huang H. C., Lai M. W., Wang H. R., Chung Y. L., Hsieh L. M., Chen C. C. Antiproliferative effect of esculetin on vascular smooth muscle cells: possible roles of signal transduction pathways. Eur J Pharmacol. 1993 Jun 11;237(1):39–44. doi: 10.1016/0014-2999(93)90090-5. [DOI] [PubMed] [Google Scholar]
- Imig J. D., Zou A. P., Stec D. E., Harder D. R., Falck J. R., Roman R. J. Formation and actions of 20-hydroxyeicosatetraenoic acid in rat renal arterioles. Am J Physiol. 1996 Jan;270(1 Pt 2):R217–R227. doi: 10.1152/ajpregu.1996.270.1.R217. [DOI] [PubMed] [Google Scholar]
- Kaiser N., Sasson S., Feener E. P., Boukobza-Vardi N., Higashi S., Moller D. E., Davidheiser S., Przybylski R. J., King G. L. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993 Jan;42(1):80–89. doi: 10.2337/diab.42.1.80. [DOI] [PubMed] [Google Scholar]
- Kang L. T., Vanderhoek J. Y. Mono (S) hydroxy fatty acids: novel ligands for cytosolic actin. J Lipid Res. 1998 Jul;39(7):1476–1482. [PubMed] [Google Scholar]
- Kim J. A., Gu J. L., Natarajan R., Berliner J. A., Nadler J. L. A leukocyte type of 12-lipoxygenase is expressed in human vascular and mononuclear cells. Evidence for upregulation by angiotensin II. Arterioscler Thromb Vasc Biol. 1995 Jul;15(7):942–948. doi: 10.1161/01.atv.15.7.942. [DOI] [PubMed] [Google Scholar]
- Klip A., Tsakiridis T., Marette A., Ortiz P. A. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J. 1994 Jan;8(1):43–53. doi: 10.1096/fasebj.8.1.8299889. [DOI] [PubMed] [Google Scholar]
- Koshihara Y., Neichi T., Murota S., Lao A., Fujimoto Y., Tatsuno T. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochim Biophys Acta. 1984 Jan 17;792(1):92–97. [PubMed] [Google Scholar]
- Krey G., Braissant O., L'Horset F., Kalkhoven E., Perroud M., Parker M. G., Wahli W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997 Jun;11(6):779–791. doi: 10.1210/mend.11.6.0007. [DOI] [PubMed] [Google Scholar]
- Kühn H., Borngräber S. Mammalian 15-lipoxygenases. Enzymatic properties and biological implications. Adv Exp Med Biol. 1999;447:5–28. [PubMed] [Google Scholar]
- López S., Vila L., Breviario F., de Castellarnau C. Interleukin-1 increases 15-hydroxyeicosatetraenoic acid formation in cultured human endothelial cells. Biochim Biophys Acta. 1993 Sep 29;1170(1):17–24. doi: 10.1016/0005-2760(93)90170-e. [DOI] [PubMed] [Google Scholar]
- Mayer B., Moser R., Gleispach H., Kukovetz W. R. Possible inhibitory function of endogenous 15-hydroperoxyeicosatetraenoic acid on prostacyclin formation in bovine aortic endothelial cells. Biochim Biophys Acta. 1986 Feb 28;875(3):641–653. doi: 10.1016/0005-2760(86)90088-3. [DOI] [PubMed] [Google Scholar]
- McCall A. L., van Bueren A. M., Huang L., Stenbit A., Celnik E., Charron M. J. Forebrain endothelium expresses GLUT4, the insulin-responsive glucose transporter. Brain Res. 1997 Jan 9;744(2):318–326. doi: 10.1016/S0006-8993(96)01122-5. [DOI] [PubMed] [Google Scholar]
- Mori T. A., Croft K. D., Puddey I. B., Beilin L. J. An improved method for the measurement of urinary and plasma F2-isoprostanes using gas chromatography-mass spectrometry. Anal Biochem. 1999 Mar 1;268(1):117–125. doi: 10.1006/abio.1998.3037. [DOI] [PubMed] [Google Scholar]
- Morrow J. D., Awad J. A., Boss H. J., Blair I. A., Roberts L. J., 2nd Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10721–10725. doi: 10.1073/pnas.89.22.10721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrow J. D., Minton T. A., Roberts L. J., 2nd The F2-isoprostane, 8-epi-prostaglandin F2 alpha, a potent agonist of the vascular thromboxane/endoperoxide receptor, is a platelet thromboxane/endoperoxide receptor antagonist. Prostaglandins. 1992 Aug;44(2):155–163. doi: 10.1016/0090-6980(92)90077-7. [DOI] [PubMed] [Google Scholar]
- Nakayama T., Hori K., Osawa T., Kawakishi S. Suppression of hydrogen peroxide-induced mammalian cytotoxicity by nordihydroguaiaretic acid. Biosci Biotechnol Biochem. 1992 Jul;56(7):1162–1163. doi: 10.1271/bbb.56.1162. [DOI] [PubMed] [Google Scholar]
- Natarajan R., Bai W., Rangarajan V., Gonzales N., Gu J. L., Lanting L., Nadler J. L. Platelet-derived growth factor BB mediated regulation of 12-lipoxygenase in porcine aortic smooth muscle cells. J Cell Physiol. 1996 Nov;169(2):391–400. doi: 10.1002/(SICI)1097-4652(199611)169:2<391::AID-JCP19>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Natarajan R., Gonzales N., Xu L., Nadler J. L. Vascular smooth muscle cells exhibit increased growth in response to elevated glucose. Biochem Biophys Res Commun. 1992 Aug 31;187(1):552–560. doi: 10.1016/s0006-291x(05)81529-3. [DOI] [PubMed] [Google Scholar]
- Natarajan R., Gu J. L., Rossi J., Gonzales N., Lanting L., Xu L., Nadler J. Elevated glucose and angiotensin II increase 12-lipoxygenase activity and expression in porcine aortic smooth muscle cells. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4947–4951. doi: 10.1073/pnas.90.11.4947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Natarajan R., Lanting L., Gonzales N., Nadler J. Formation of an F2-isoprostane in vascular smooth muscle cells by elevated glucose and growth factors. Am J Physiol. 1996 Jul;271(1 Pt 2):H159–H165. doi: 10.1152/ajpheart.1996.271.1.H159. [DOI] [PubMed] [Google Scholar]
- Nishiyama M., Okamoto H., Watanabe T., Hori T., Sasaki T., Kirino T., Shimizu T. Endothelium is required for 12-hydroperoxyeicosatetraenoic acid-induced vasoconstriction. Eur J Pharmacol. 1998 Jan 2;341(1):57–63. doi: 10.1016/s0014-2999(97)01353-8. [DOI] [PubMed] [Google Scholar]
- Powell W. S. Formation of 6-oxoprostaglandin F1 alpha, 6,15-dioxoprostaglandin F1 alpha, and monohydroxyicosatetraenoic acids from arachidonic acid by fetal calf aorta and ductus arteriosus. J Biol Chem. 1982 Aug 25;257(16):9457–9463. [PubMed] [Google Scholar]
- Revtyak G. E., Johnson A. R., Campbell W. B. Cultured bovine coronary arterial endothelial cells synthesize HETEs and prostacyclin. Am J Physiol. 1988 Jan;254(1 Pt 1):C8–19. doi: 10.1152/ajpcell.1988.254.1.C8. [DOI] [PubMed] [Google Scholar]
- Sasson S., Davarashvili A., Reich R. Role of lipoxygenase in the regulation of glucose transport in aortic vascular cells. Adv Exp Med Biol. 1999;469:377–383. doi: 10.1007/978-1-4615-4793-8_55. [DOI] [PubMed] [Google Scholar]
- Sasson S., Gorowits N., Joost H. G., King G. L., Cerasi E., Kaiser N. Regulation by metformin of the hexose transport system in vascular endothelial and smooth muscle cells. Br J Pharmacol. 1996 Mar;117(6):1318–1324. doi: 10.1111/j.1476-5381.1996.tb16731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasson S., Kaiser N., Dan-Goor M., Oron R., Koren S., Wertheimer E., Unluhizarci K., Cerasi E. Substrate autoregulation of glucose transport: hexose 6-phosphate mediates the cellular distribution of glucose transporters. Diabetologia. 1997 Jan;40(1):30–39. doi: 10.1007/s001250050639. [DOI] [PubMed] [Google Scholar]
- Sekiya K., Okuda H., Arichi S. Selective inhibition of platelet lipoxygenase by esculetin. Biochim Biophys Acta. 1982 Oct 14;713(1):68–72. [PubMed] [Google Scholar]
- Setty B. N., Graeber J. E., Stuart M. J. The mitogenic effect of 15- and 12-hydroxyeicosatetraenoic acid on endothelial cells may be mediated via diacylglycerol kinase inhibition. J Biol Chem. 1987 Dec 25;262(36):17613–17622. [PubMed] [Google Scholar]
- Setty B. N., Stuart M. J., Walenga R. W. Formation of 11-hydroxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid in human umbilical arteries is catalyzed by cyclooxygenase. Biochim Biophys Acta. 1985 Mar 6;833(3):484–494. doi: 10.1016/0005-2760(85)90106-7. [DOI] [PubMed] [Google Scholar]
- Sun C. W., Alonso-Galicia M., Taheri M. R., Falck J. R., Harder D. R., Roman R. J. Nitric oxide-20-hydroxyeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles. Circ Res. 1998 Nov 30;83(11):1069–1079. doi: 10.1161/01.res.83.11.1069. [DOI] [PubMed] [Google Scholar]
- Tateson J. E., Randall R. W., Reynolds C. H., Jackson W. P., Bhattacherjee P., Salmon J. A., Garland L. G. Selective inhibition of arachidonate 5-lipoxygenase by novel acetohydroxamic acids: biochemical assessment in vitro and ex vivo. Br J Pharmacol. 1988 Jun;94(2):528–539. doi: 10.1111/j.1476-5381.1988.tb11557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tavares I. A., Bishai P. M., Bennett A. Activity of nimesulide on constitutive and inducible cyclooxygenases. Arzneimittelforschung. 1995 Oct;45(10):1093–1095. [PubMed] [Google Scholar]
- Walther M., Holzhütter H. G., Kuban R. J., Wiesner R., Rathmann J., Kühn H. The inhibition of mammalian 15-lipoxygenases by the anti-inflammatory drug ebselen: dual-type mechanism involving covalent linkage and alteration of the iron ligand sphere. Mol Pharmacol. 1999 Jul;56(1):196–203. doi: 10.1124/mol.56.1.196. [DOI] [PubMed] [Google Scholar]
- Wang T., Powell W. S. Increased levels of monohydroxy metabolites of arachidonic acid and linoleic acid in LDL and aorta from atherosclerotic rabbits. Biochim Biophys Acta. 1991 Jul 9;1084(2):129–138. doi: 10.1016/0005-2760(91)90211-y. [DOI] [PubMed] [Google Scholar]
- Wrenzycki C., Herrmann D., Carnwath J. W., Niemann H. Expression of RNA from developmentally important genes in preimplantation bovine embryos produced in TCM supplemented with BSA. J Reprod Fertil. 1998 Mar;112(2):387–398. doi: 10.1530/jrf.0.1120387. [DOI] [PubMed] [Google Scholar]
- Yoshimoto T., Yamamoto Y., Arakawa T., Suzuki H., Yamamoto S., Yokoyama C., Tanabe T., Toh H. Molecular cloning and expression of human arachidonate 12-lipoxygenase. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1230–1235. doi: 10.1016/0006-291x(90)91580-l. [DOI] [PubMed] [Google Scholar]
