Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 1;362(Pt 2):433–442. doi: 10.1042/0264-6021:3620433

Interaction of syncollin with GP-2, the major membrane protein of pancreatic zymogen granules, and association with lipid microdomains.

Ina Kalus 1, Alois Hodel 1, Annett Koch 1, Ralf Kleene 1, J Michael Edwardson 1, Michael Schrader 1
PMCID: PMC1222404  PMID: 11853552

Abstract

Syncollin, a novel pancreatic zymogen granule protein, is present on the luminal side of the granule membrane. To address the function of syncollin, we searched for putative binding partners. Cross-linking experiments with purified syncollin, and granule content and membrane proteins revealed a direct interaction between syncollin and GP-2, a major glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein. An interaction was also observed when cross-linking was performed with recombinant GP-2. In addition, syncollin could be cross-linked to itself, supporting the suggestion that it exists as a homo-oligomer. Cleavage of the GPI anchor of GP-2 by treatment of granule membranes with phosphatidylinositol-specific phospholipase C had no effect on the membrane attachment of syncollin, indicating that it is not mediated exclusively via an interaction with GP-2. Syncollin was found to be associated with detergent-insoluble cholesterol/glycolipid-enriched complexes. These complexes floated to the lighter fractions of sucrose-density gradients and also contained GP-2, the lectin ZG16p, sulphated matrix proteoglycans and the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) syntaxin 3 and synaptobrevin 2. Our results indicate that membrane-associated syncollin is a component of lipid rafts, where it interacts both with GP-2 and membrane lipids. We suggest that the syncollin-GP-2 complex might play a role in signal transduction across the granule membrane.

Full Text

The Full Text of this article is available as a PDF (358.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An S. J., Hansen N. J., Hodel A., Jahn R., Edwardson J. M. Analysis of the association of syncollin with the membrane of the pancreatic zymogen granule. J Biol Chem. 2000 Apr 14;275(15):11306–11311. doi: 10.1074/jbc.275.15.11306. [DOI] [PubMed] [Google Scholar]
  2. Cabana C., Magny P., Nadeau D., Grondin G., Beaudoin A. Freeze-fracture study of the zymogen granule membrane of pancreas: two novel types of intramembrane particles. Eur J Cell Biol. 1988 Feb;45(2):246–255. [PubMed] [Google Scholar]
  3. Chamberlain L. H., Burgoyne R. D., Gould G. W. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci U S A. 2001 May 1;98(10):5619–5624. doi: 10.1073/pnas.091502398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cronshagen U., Voland P., Kern H. F. cDNA cloning and characterization of a novel 16 kDa protein located in zymogen granules of rat pancreas and goblet cells of the gut. Eur J Cell Biol. 1994 Dec;65(2):366–377. [PubMed] [Google Scholar]
  5. Dartsch H., Kleene R., Kern H. F. In vitro condensation-sorting of enzyme proteins isolated from rat pancreatic acinar cells. Eur J Cell Biol. 1998 Mar;75(3):211–222. doi: 10.1016/S0171-9335(98)80115-5. [DOI] [PubMed] [Google Scholar]
  6. Dittié A., Kern H. F. The major zymogen granule membrane protein GP-2 in the rat pancreas is not involved in granule formation. Eur J Cell Biol. 1992 Aug;58(2):243–258. [PubMed] [Google Scholar]
  7. Edelmann L., Hanson P. I., Chapman E. R., Jahn R. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J. 1995 Jan 16;14(2):224–231. doi: 10.1002/j.1460-2075.1995.tb06995.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edwardson J. M., An S., Jahn R. The secretory granule protein syncollin binds to syntaxin in a Ca2(+)-sensitive manner. Cell. 1997 Jul 25;90(2):325–333. doi: 10.1016/s0092-8674(00)80340-2. [DOI] [PubMed] [Google Scholar]
  9. Freedman S. D., Katz M. H., Parker E. M., Gelrud A. Endocytosis at the apical plasma membrane of pancreatic acinar cells is regulated by tyrosine kinases. Am J Physiol. 1999 Feb;276(2 Pt 1):C306–C311. doi: 10.1152/ajpcell.1999.276.2.C306. [DOI] [PubMed] [Google Scholar]
  10. Freedman S. D., Kern H. F., Scheele G. A. Acinar lumen pH regulates endocytosis, but not exocytosis, at the apical plasma membrane of pancreatic acinar cells. Eur J Cell Biol. 1998 Feb;75(2):153–162. doi: 10.1016/S0171-9335(98)80057-5. [DOI] [PubMed] [Google Scholar]
  11. Freedman S. D., Kern H. F., Scheele G. A. Cleavage of GPI-anchored proteins from the plasma membrane activates apical endocytosis in pancreatic acinar cells. Eur J Cell Biol. 1998 Feb;75(2):163–173. doi: 10.1016/S0171-9335(98)80058-7. [DOI] [PubMed] [Google Scholar]
  12. Freedman S. D., Sakamoto K., Venu R. P. GP2, the homologue to the renal cast protein uromodulin, is a major component of intraductal plugs in chronic pancreatitis. J Clin Invest. 1993 Jul;92(1):83–90. doi: 10.1172/JCI116602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freedman S. D., Scheele G. A. Reversible pH-induced homophilic binding of GP2, a glycosyl-phosphatidylinositol-anchored protein in pancreatic zymogen granule membranes. Eur J Cell Biol. 1993 Aug;61(2):229–238. [PubMed] [Google Scholar]
  14. Fukuoka S., Freedman S. D., Scheele G. A. A single gene encodes membrane-bound and free forms of GP-2, the major glycoprotein in pancreatic secretory (zymogen) granule membranes. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2898–2902. doi: 10.1073/pnas.88.7.2898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gaisano H. Y., Ghai M., Malkus P. N., Sheu L., Bouquillon A., Bennett M. K., Trimble W. S. Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells. Mol Biol Cell. 1996 Dec;7(12):2019–2027. doi: 10.1091/mbc.7.12.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gaisano H. Y., Sheu L., Foskett J. K., Trimble W. S. Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem. 1994 Jun 24;269(25):17062–17066. [PubMed] [Google Scholar]
  17. Galli T., Zahraoui A., Vaidyanathan V. V., Raposo G., Tian J. M., Karin M., Niemann H., Louvard D. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol Biol Cell. 1998 Jun;9(6):1437–1448. doi: 10.1091/mbc.9.6.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goncz K. K., Rothman S. S. A trans-membrane pore can account for protein movement across zymogen granule membranes. Biochim Biophys Acta. 1995 Aug 23;1238(1):91–93. doi: 10.1016/0005-2736(95)00128-p. [DOI] [PubMed] [Google Scholar]
  19. Goncz K. K., Rothman S. S. Protein flux across the membrane of single secretion granules. Biochim Biophys Acta. 1992 Aug 10;1109(1):7–16. doi: 10.1016/0005-2736(92)90181-k. [DOI] [PubMed] [Google Scholar]
  20. Hansen L. J., Reddy M. K., Reddy J. K. Comparison of secretory protein and membrane composition of secretory granules isolated from normal and neoplastic pancreatic acinar cells of rats. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4379–4383. doi: 10.1073/pnas.80.14.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hansen N. J., Antonin W., Edwardson J. M. Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J Biol Chem. 1999 Aug 6;274(32):22871–22876. doi: 10.1074/jbc.274.32.22871. [DOI] [PubMed] [Google Scholar]
  22. Harder T., Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol. 1997 Aug;9(4):534–542. doi: 10.1016/s0955-0674(97)80030-0. [DOI] [PubMed] [Google Scholar]
  23. Hodel A., An S. J., Hansen N. J., Lawrence J., Wäsle B., Schrader M., Edwardson J. M. Cholesterol-dependent interaction of syncollin with the membrane of the pancreatic zymogen granule. Biochem J. 2001 Jun 15;356(Pt 3):843–850. doi: 10.1042/0264-6021:3560843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hodel A., Edwardson J. M. Targeting of the zymogen-granule protein syncollin in AR42J and AtT-20 cells. Biochem J. 2000 Sep 15;350(Pt 3):637–643. [PMC free article] [PubMed] [Google Scholar]
  25. Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem J. 1988 Mar 15;250(3):865–869. doi: 10.1042/bj2500865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jacob M., Lainé J., LeBel D. Specific interactions of pancreatic amylase at acidic pH. Amylase and the major protein of the zymogen granule membrane (GP-2) bind to immobilized or polymerized amylase. Biochem Cell Biol. 1992 Oct-Nov;70(10-11):1105–1114. doi: 10.1139/o92-156. [DOI] [PubMed] [Google Scholar]
  27. Kleene R., Classen B., Zdzieblo J., Schrader M. SH3 binding sites of ZG29p mediate an interaction with amylase and are involved in condensation-sorting in the exocrine rat pancreas. Biochemistry. 2000 Aug 15;39(32):9893–9900. doi: 10.1021/bi000876i. [DOI] [PubMed] [Google Scholar]
  28. Kleene R., Dartsch H., Kern H. F. The secretory lectin ZG16p mediates sorting of enzyme proteins to the zymogen granule membrane in pancreatic acinar cells. Eur J Cell Biol. 1999 Feb;78(2):79–90. doi: 10.1016/S0171-9335(99)80009-0. [DOI] [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Lainé J., Pelletier G., Grondin G., Peng M., LeBel D. Development of GP-2 and five zymogens in the fetal and young pig: biochemical and immunocytochemical evidence of an atypical zymogen granule composition in the fetus. J Histochem Cytochem. 1996 May;44(5):481–499. doi: 10.1177/44.5.8627005. [DOI] [PubMed] [Google Scholar]
  31. Lang T., Bruns D., Wenzel D., Riedel D., Holroyd P., Thiele C., Jahn R. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 2001 May 1;20(9):2202–2213. doi: 10.1093/emboj/20.9.2202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Leblond F. A., Viau G., Lainé J., Lebel D. Reconstitution in vitro of the pH-dependent aggregation of pancreatic zymogens en route to the secretory granule: implication of GP-2. Biochem J. 1993 Apr 1;291(Pt 1):289–296. doi: 10.1042/bj2910289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Madore N., Smith K. L., Graham C. H., Jen A., Brady K., Hall S., Morris R. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 1999 Dec 15;18(24):6917–6926. doi: 10.1093/emboj/18.24.6917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parker E. M., Zaman M. M., Freedman S. D. GP2, a GPI-anchored protein in the apical plasma membrane of the pancreatic acinar cell, co-immunoprecipitates with src kinases and caveolin. Pancreas. 2000 Oct;21(3):219–225. doi: 10.1097/00006676-200010000-00001. [DOI] [PubMed] [Google Scholar]
  35. Rodgers W., Crise B., Rose J. K. Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol. 1994 Aug;14(8):5384–5391. doi: 10.1128/mcb.14.8.5384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Röper K., Corbeil D., Huttner W. B. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol. 2000 Sep;2(9):582–592. doi: 10.1038/35023524. [DOI] [PubMed] [Google Scholar]
  37. Sargiacomo M., Sudol M., Tang Z., Lisanti M. P. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol. 1993 Aug;122(4):789–807. doi: 10.1083/jcb.122.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scheele G. A., Fukuoka S., Freedman S. D. Role of the GP2/THP family of GPI-anchored proteins in membrane trafficking during regulated exocrine secretion. Pancreas. 1994 Mar;9(2):139–149. doi: 10.1097/00006676-199403000-00001. [DOI] [PubMed] [Google Scholar]
  39. Schmidt K., Dartsch H., Linder D., Kern H. F., Kleene R. A submembranous matrix of proteoglycans on zymogen granule membranes is involved in granule formation in rat pancreatic acinar cells. J Cell Sci. 2000 Jun;113(Pt 12):2233–2242. doi: 10.1242/jcs.113.12.2233. [DOI] [PubMed] [Google Scholar]
  40. Schmidt K., Schrader M., Kern H. F., Kleene R. Regulated apical secretion of zymogens in rat pancreas. Involvement of the glycosylphosphatidylinositol-anchored glycoprotein GP-2, the lectin ZG16p, and cholesterol-glycosphingolipid-enriched microdomains. J Biol Chem. 2001 Jan 10;276(17):14315–14323. doi: 10.1074/jbc.M006221200. [DOI] [PubMed] [Google Scholar]
  41. Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
  42. Stefanová I., Horejsí V., Ansotegui I. J., Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. doi: 10.1126/science.1719635. [DOI] [PubMed] [Google Scholar]
  43. Tan S., Hooi S. C. Syncollin is differentially expressed in rat proximal small intestine and regulated by feeding behavior. Am J Physiol Gastrointest Liver Physiol. 2000 Feb;278(2):G308–G320. doi: 10.1152/ajpgi.2000.278.2.G308. [DOI] [PubMed] [Google Scholar]
  44. Thiele C., Huttner W. B. Protein and lipid sorting from the trans-Golgi network to secretory granules-recent developments. Semin Cell Dev Biol. 1998 Oct;9(5):511–516. doi: 10.1006/scdb.1998.0259. [DOI] [PubMed] [Google Scholar]
  45. Tooze S. A. Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):231–244. doi: 10.1016/S0167-4889(98)00059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tooze S. A., Martens G. J., Huttner W. B. Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol. 2001 Mar;11(3):116–122. doi: 10.1016/s0962-8924(00)01907-3. [DOI] [PubMed] [Google Scholar]
  47. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES