Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 1;362(Pt 2):443–451. doi: 10.1042/0264-6021:3620443

Two mutations in troponin I that cause hypertrophic cardiomyopathy have contrasting effects on cardiac muscle contractility.

David Burton 1, Hassan Abdulrazzak 1, Adam Knott 1, Kathryn Elliott 1, Charles Redwood 1, Hugh Watkins 1, Steven Marston 1, Chris Ashley 1
PMCID: PMC1222405  PMID: 11853553

Abstract

We investigated the effects of two mutations in human cardiac troponin I, Arg(145)-->Gly and Gly(203)-->Ser, that are reported to cause familial hypertrophic cardiomyopathy. Mutant and wild-type troponin I, overexpressed in Escherichia coli, were used to reconstitute troponin complexes in vanadate-treated guinea pig cardiac trabeculae skinned fibres, and thin filaments were reconstituted with human cardiac troponin and tropomyosin along with rabbit skeletal muscle actin for in vitro motility and actomyosin ATPase assays. Troponin containing the Arg(145)-->Gly mutation inhibited force in skinned trabeculae less than did the wild-type, and had almost no inhibitory function in the in vitro motility assay. There was an enhanced inhibitory function with mixtures of 10-30% [Gly(145)]troponin I with the wild-type protein. Skinned trabeculae reconstituted with troponin I containing the Gly(203)-->Ser mutation and troponin C produced less Ca(2+)-activated force (64+/-8% of wild-type) and demonstrated lower Ca(2+) sensitivity [Delta(p)Ca(50) (log of the Ca(2+) concentration that gave 50% of maximal activation) 0.25 unit (P<0.05)] compared with wild-type troponin I, but thin filaments containing [Ser(203)]-troponin I were indistinguishable from those containing the wild-type protein in in vitro motility and ATPase assays. Thus these two mutations each result in hypertrophic cardiomyopathy, but have opposite effects on the overall contractility of the muscle in the systems we investigated, indicating either that we have not yet identified the relevant alteration in contractility for the Gly(203)->Ser mutation, or that the disease does not result directly from any particular alteration in contractility.

Full Text

The Full Text of this article is available as a PDF (266.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bing W., Fraser I. D., Marston S. B. Troponin I and troponin T interact with troponin C to produce different Ca2+-dependent effects on actin-tropomyosin filament motility. Biochem J. 1997 Oct 15;327(Pt 2):335–340. doi: 10.1042/bj3270335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bing W., Knott A., Redwood C., Esposito G., Purcell I., Watkins H., Marston S. Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha -tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cell Cardiol. 2000 Aug;32(8):1489–1498. doi: 10.1006/jmcc.2000.1182. [DOI] [PubMed] [Google Scholar]
  3. Blair E., Redwood C., Ashrafian H., Oliveira M., Broxholme J., Kerr B., Salmon A., Ostman-Smith I., Watkins H. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001 May 15;10(11):1215–1220. doi: 10.1093/hmg/10.11.1215. [DOI] [PubMed] [Google Scholar]
  4. Cuda G., Fananapazir L., Epstein N. D., Sellers J. R. The in vitro motility activity of beta-cardiac myosin depends on the nature of the beta-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. J Muscle Res Cell Motil. 1997 Jun;18(3):275–283. doi: 10.1023/a:1018613907574. [DOI] [PubMed] [Google Scholar]
  5. Deng Y., Schmidtmann A., Redlich A., Westerdorf B., Jaquet K., Thieleczek R. Effects of phosphorylation and mutation R145G on human cardiac troponin I function. Biochemistry. 2001 Dec 4;40(48):14593–14602. doi: 10.1021/bi0115232. [DOI] [PubMed] [Google Scholar]
  6. Digel J., Abugo O., Kobayashi T., Gryczynski Z., Lakowicz J. R., Collins J. H. Calcium- and magnesium-dependent interactions between the C-terminus of troponin I and the N-terminal, regulatory domain of troponin C. Arch Biochem Biophys. 2001 Mar 15;387(2):243–249. doi: 10.1006/abbi.2000.2259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elliott K., Watkins H., Redwood C. S. Altered regulatory properties of human cardiac troponin I mutants that cause hypertrophic cardiomyopathy. J Biol Chem. 2000 Jul 21;275(29):22069–22074. doi: 10.1074/jbc.M002502200. [DOI] [PubMed] [Google Scholar]
  8. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  9. Ferrières G., Pugnière M., Mani J. C., Villard S., Laprade M., Doutre P., Pau B., Granier C. Systematic mapping of regions of human cardiac troponin I involved in binding to cardiac troponin C: N- and C-terminal low affinity contributing regions. FEBS Lett. 2000 Aug 18;479(3):99–105. doi: 10.1016/s0014-5793(00)01881-0. [DOI] [PubMed] [Google Scholar]
  10. Fraser I. D., Marston S. B. In vitro motility analysis of smooth muscle caldesmon control of actin-tropomyosin filament movement. J Biol Chem. 1995 Aug 25;270(34):19688–19693. doi: 10.1074/jbc.270.34.19688. [DOI] [PubMed] [Google Scholar]
  11. Hunkeler N. M., Kullman J., Murphy A. M. Troponin I isoform expression in human heart. Circ Res. 1991 Nov;69(5):1409–1414. doi: 10.1161/01.res.69.5.1409. [DOI] [PubMed] [Google Scholar]
  12. James J., Zhang Y., Osinska H., Sanbe A., Klevitsky R., Hewett T. E., Robbins J. Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ Res. 2000 Oct 27;87(9):805–811. doi: 10.1161/01.res.87.9.805. [DOI] [PubMed] [Google Scholar]
  13. Kamisago M., Sharma S. D., DePalma S. R., Solomon S., Sharma P., McDonough B., Smoot L., Mullen M. P., Woolf P. K., Wigle E. D. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med. 2000 Dec 7;343(23):1688–1696. doi: 10.1056/NEJM200012073432304. [DOI] [PubMed] [Google Scholar]
  14. Kron S. J., Toyoshima Y. Y., Uyeda T. Q., Spudich J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 1991;196:399–416. doi: 10.1016/0076-6879(91)96035-p. [DOI] [PubMed] [Google Scholar]
  15. Maron B. J., Gardin J. M., Flack J. M., Gidding S. S., Kurosaki T. T., Bild D. E. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 1995 Aug 15;92(4):785–789. doi: 10.1161/01.cir.92.4.785. [DOI] [PubMed] [Google Scholar]
  16. Marston S. B., Fraser I. D., Bing W., Roper G. A simple method for automatic tracking of actin filaments in the motility assay. J Muscle Res Cell Motil. 1996 Aug;17(4):497–506. doi: 10.1007/BF00123365. [DOI] [PubMed] [Google Scholar]
  17. Marston S. B., Hodgkinson J. L. Cardiac and skeletal myopathies: can genotype explain phenotype? J Muscle Res Cell Motil. 2001;22(1):1–4. doi: 10.1023/a:1010355716511. [DOI] [PubMed] [Google Scholar]
  18. McDonough J. L., Arrell D. K., Van Eyk J. E. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res. 1999 Jan 8;84(1):9–20. doi: 10.1161/01.res.84.1.9. [DOI] [PubMed] [Google Scholar]
  19. Montgomery D. E., Tardiff J. C., Chandra M. Cardiac troponin T mutations: correlation between the type of mutation and the nature of myofilament dysfunction in transgenic mice. J Physiol. 2001 Oct 15;536(Pt 2):583–592. doi: 10.1111/j.1469-7793.2001.0583c.xd. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murphy A. M., Kögler H., Georgakopoulos D., McDonough J. L., Kass D. A., Van Eyk J. E., Marbán E. Transgenic mouse model of stunned myocardium. Science. 2000 Jan 21;287(5452):488–491. doi: 10.1126/science.287.5452.488. [DOI] [PubMed] [Google Scholar]
  21. Mörner S., Richard P., Kazzam E., Hainque B., Schwartz K., Waldenström A. Deletion in the cardiac troponin I gene in a family from northern Sweden with hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2000 Mar;32(3):521–525. doi: 10.1006/jmcc.1999.1099. [DOI] [PubMed] [Google Scholar]
  22. Olson T. M., Kishimoto N. Y., Whitby F. G., Michels V. V. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol. 2001 Apr;33(4):723–732. doi: 10.1006/jmcc.2000.1339. [DOI] [PubMed] [Google Scholar]
  23. Purcell I. F., Bing W., Marston S. B. Functional analysis of human cardiac troponin by the in vitro motility assay: comparison of adult, foetal and failing hearts. Cardiovasc Res. 1999 Sep;43(4):884–891. doi: 10.1016/s0008-6363(99)00123-6. [DOI] [PubMed] [Google Scholar]
  24. Rarick H. M., Tu X. H., Solaro R. J., Martin A. F. The C terminus of cardiac troponin I is essential for full inhibitory activity and Ca2+ sensitivity of rat myofibrils. J Biol Chem. 1997 Oct 24;272(43):26887–26892. doi: 10.1074/jbc.272.43.26887. [DOI] [PubMed] [Google Scholar]
  25. Redwood C., Lohmann K., Bing W., Esposito G. M., Elliott K., Abdulrazzak H., Knott A., Purcell I., Marston S., Watkins H. Investigation of a truncated cardiac troponin T that causes familial hypertrophic cardiomyopathy: Ca(2+) regulatory properties of reconstituted thin filaments depend on the ratio of mutant to wild-type protein. Circ Res. 2000 Jun 9;86(11):1146–1152. doi: 10.1161/01.res.86.11.1146. [DOI] [PubMed] [Google Scholar]
  26. Simnett S. J., Johns E. C., Lipscomb S., Mulligan I. P., Ashley C. C. Effect of pH, phosphate, and ADP on relaxation of myocardium after photolysis of diazo 2. Am J Physiol. 1998 Sep;275(3 Pt 2):H951–H960. doi: 10.1152/ajpheart.1998.275.3.H951. [DOI] [PubMed] [Google Scholar]
  27. Strauss J. D., Van Eyk J. E., Barth Z., Kluwe L., Wiesner R. J., Maéda K., Rüegg J. C. Recombinant troponin I substitution and calcium responsiveness in skinned cardiac muscle. Pflugers Arch. 1996 Apr;431(6):853–862. doi: 10.1007/s004240050077. [DOI] [PubMed] [Google Scholar]
  28. Strauss J. D., Zeugner C., Van Eyk J. E., Bletz C., Troschka M., Rüegg J. C. Troponin replacement in permeabilized cardiac muscle. Reversible extraction of troponin I by incubation with vanadate. FEBS Lett. 1992 Oct 5;310(3):229–234. doi: 10.1016/0014-5793(92)81338-m. [DOI] [PubMed] [Google Scholar]
  29. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  30. Sweeney H. L., Feng H. S., Yang Z., Watkins H. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14406–14410. doi: 10.1073/pnas.95.24.14406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takahashi-Yanaga F., Morimoto S., Ohtsuki I. Effect of Arg145Gly mutation in human cardiac troponin I on the ATPase activity of cardiac myofibrils. J Biochem. 2000 Mar;127(3):355–357. doi: 10.1093/oxfordjournals.jbchem.a022615. [DOI] [PubMed] [Google Scholar]
  32. Tardiff J. C., Factor S. M., Tompkins B. D., Hewett T. E., Palmer B. M., Moore R. L., Schwartz S., Robbins J., Leinwand L. A. A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J Clin Invest. 1998 Jun 15;101(12):2800–2811. doi: 10.1172/JCI2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tobacman L. S., Lin D., Butters C., Landis C., Back N., Pavlov D., Homsher E. Functional consequences of troponin T mutations found in hypertrophic cardiomyopathy. J Biol Chem. 1999 Oct 1;274(40):28363–28370. doi: 10.1074/jbc.274.40.28363. [DOI] [PubMed] [Google Scholar]
  34. Vallins W. J., Brand N. J., Dabhade N., Butler-Browne G., Yacoub M. H., Barton P. J. Molecular cloning of human cardiac troponin I using polymerase chain reaction. FEBS Lett. 1990 Sep 17;270(1-2):57–61. doi: 10.1016/0014-5793(90)81234-f. [DOI] [PubMed] [Google Scholar]
  35. Van Eyk J. E., Hodges R. S. The biological importance of each amino acid residue of the troponin I inhibitory sequence 104-115 in the interaction with troponin C and tropomyosin-actin. J Biol Chem. 1988 Feb 5;263(4):1726–1732. [PubMed] [Google Scholar]
  36. Van Eyk J. E., Strauss J. D., Hodges R. S., Rüegg J. C. A synthetic peptide mimics troponin I function in the calcium-dependent regulation of muscle contraction. FEBS Lett. 1993 Jun 1;323(3):223–228. doi: 10.1016/0014-5793(93)81344-y. [DOI] [PubMed] [Google Scholar]
  37. Wilkinson J. M., Grand R. J. Comparison of amino acid sequence of troponin I from different striated muscles. Nature. 1978 Jan 5;271(5640):31–35. doi: 10.1038/271031a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES