Abstract
Data presented previously suggest that release of components of the cartilage matrix, in response to catabolic agents, cannot be accounted for by proteolytic mechanisms alone. In the present study, the release of glycosaminoglycan-containing components from bovine nasal cartilage cultured in the presence of interleukin-1beta, and from bovine nasal, fetal bovine epiphyseal and adult human articular cartilage cultured in the presence of retinoic acid, was accompanied by the loss of link protein and hyaluronate into the culture medium. Chromatographic analysis of the released hyaluronate showed it to be markedly reduced in size relative to that extracted from the corresponding tissue. It is proposed that, under stimulation by catabolic agents, two independent, but concurrent, mechanisms act to promote the release of aggrecan from the cartilage matrix. First, proteolytic cleavage of the aggrecan core protein results in the production of glycosaminoglycan-containing fragments that are free to diffuse from the tissue. Secondly, cleavage of hyaluronate renders portions of the proteoglycan aggregate small enough so that complexes of aggrecan (or fragments containing its G1 domain) and link protein are released from the tissue. It is likely that both mechanisms contribute to cartilage metabolism in normal physiology and pathology.
Full Text
The Full Text of this article is available as a PDF (202.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barry F. P., Rosenberg L. C., Gaw J. U., Gaw J. U., Koob T. J., Neame P. J. N- and O-linked keratan sulfate on the hyaluronan binding region of aggrecan from mature and immature bovine cartilage. J Biol Chem. 1995 Sep 1;270(35):20516–20524. doi: 10.1074/jbc.270.35.20516. [DOI] [PubMed] [Google Scholar]
- Caterson B., Christner J. E., Baker J. R., Couchman J. R. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. Fed Proc. 1985 Feb;44(2):386–393. [PubMed] [Google Scholar]
- Caterson B., Flannery C. R., Hughes C. E., Little C. B. Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol. 2000 Aug;19(4):333–344. doi: 10.1016/s0945-053x(00)00078-0. [DOI] [PubMed] [Google Scholar]
- Cleland R. L., Sherblom A. P. Isolation and physical characterization of hyaluronic acid prepared from bovine nasal septum by cetylpyridinium chloride precipitation. J Biol Chem. 1977 Jan 25;252(2):420–426. [PubMed] [Google Scholar]
- Doege K., Sasaki M., Horigan E., Hassell J. R., Yamada Y. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem. 1987 Dec 25;262(36):17757–17767. [PubMed] [Google Scholar]
- Farndale R. W., Buttle D. J., Barrett A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986 Sep 4;883(2):173–177. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
- Flannery C. R., Little C. B., Hughes C. E., Caterson B. Expression and activity of articular cartilage hyaluronidases. Biochem Biophys Res Commun. 1998 Oct 29;251(3):824–829. doi: 10.1006/bbrc.1998.9561. [DOI] [PubMed] [Google Scholar]
- Fosang A. J., Hardingham T. E. Isolation of the N-terminal globular protein domains from cartilage proteoglycans. Identification of G2 domain and its lack of interaction with hyaluronate and link protein. Biochem J. 1989 Aug 1;261(3):801–809. doi: 10.1042/bj2610801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fosang A. J., Neame P. J., Last K., Hardingham T. E., Murphy G., Hamilton J. A. The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J Biol Chem. 1992 Sep 25;267(27):19470–19474. [PubMed] [Google Scholar]
- Fosang A. J., Tyler J. A., Hardingham T. E. Effect of interleukin-1 and insulin like growth factor-1 on the release of proteoglycan components and hyaluronan from pig articular cartilage in explant culture. Matrix. 1991 Feb;11(1):17–24. doi: 10.1016/s0934-8832(11)80223-4. [DOI] [PubMed] [Google Scholar]
- Goldberg R. L. Enzyme-linked immunosorbent assay for hyaluronate using cartilage proteoglycan and an antibody to keratan sulfate. Anal Biochem. 1988 Nov 1;174(2):448–458. doi: 10.1016/0003-2697(88)90043-7. [DOI] [PubMed] [Google Scholar]
- Hardingham T. E., Fosang A. J. Proteoglycans: many forms and many functions. FASEB J. 1992 Feb 1;6(3):861–870. [PubMed] [Google Scholar]
- Ilic M. Z., Handley C. J., Robinson H. C., Mok M. T. Mechanism of catabolism of aggrecan by articular cartilage. Arch Biochem Biophys. 1992 Apr;294(1):115–122. doi: 10.1016/0003-9861(92)90144-l. [DOI] [PubMed] [Google Scholar]
- Lark M. W., Bayne E. K., Flanagan J., Harper C. F., Hoerrner L. A., Hutchinson N. I., Singer I. I., Donatelli S. A., Weidner J. R., Williams H. R. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest. 1997 Jul 1;100(1):93–106. doi: 10.1172/JCI119526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee E. R., Lamplugh L., Leblond C. P., Mordier S., Magny M. C., Mort J. S. Immunolocalization of the cleavage of the aggrecan core protein at the Asn341-Phe342 bond, as an indicator of the location of the metalloproteinases active in the lysis of the rat growth plate. Anat Rec. 1998 Sep;252(1):117–132. doi: 10.1002/(SICI)1097-0185(199809)252:1<117::AID-AR10>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Liu J., Cassidy J. D., Allan A., Neame P. J., Mort J. S., Roughley P. J. Link protein shows species variation in its susceptibility to proteolysis. J Orthop Res. 1992 Sep;10(5):621–630. doi: 10.1002/jor.1100100504. [DOI] [PubMed] [Google Scholar]
- McNicol D., Roughley P. J. Extraction and characterization of proteoglycan from human meniscus. Biochem J. 1980 Mar 1;185(3):705–713. doi: 10.1042/bj1850705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morales T. I., Hascall V. C. Correlated metabolism of proteoglycans and hyaluronic acid in bovine cartilage organ cultures. J Biol Chem. 1988 Mar 15;263(8):3632–3638. [PubMed] [Google Scholar]
- Mort J. S., Poole A. R., Roughley P. J. Age-related changes in the structure of proteoglycan link proteins present in normal human articular cartilage. Biochem J. 1983 Jul 15;214(1):269–272. doi: 10.1042/bj2140269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ng C. K., Handley C. J., Preston B. N., Robinson H. C. The extracellular processing and catabolism of hyaluronan in cultured adult articular cartilage explants. Arch Biochem Biophys. 1992 Oct;298(1):70–79. doi: 10.1016/0003-9861(92)90095-e. [DOI] [PubMed] [Google Scholar]
- Nishida Y., D'Souza A. L., Thonar E. J., Knudson W. Stimulation of hyaluronan metabolism by interleukin-1alpha in human articular cartilage. Arthritis Rheum. 2000 Jun;43(6):1315–1326. doi: 10.1002/1529-0131(200006)43:6<1315::AID-ANR14>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Plaas A. H., Sandy J. D. A cartilage explant system for studies on aggrecan structure, biosynthesis and catabolism in discrete zones of the mammalian growth plate. Matrix. 1993 Mar;13(2):135–147. doi: 10.1016/s0934-8832(11)80072-7. [DOI] [PubMed] [Google Scholar]
- Pratta M. A., Tortorella M. D., Arner E. C. Age-related changes in aggrecan glycosylation affect cleavage by aggrecanase. J Biol Chem. 2000 Dec 15;275(50):39096–39102. doi: 10.1074/jbc.M006201200. [DOI] [PubMed] [Google Scholar]
- Ratcliffe A., Tyler J. A., Hardingham T. E. Articular cartilage cultured with interleukin 1. Increased release of link protein, hyaluronate-binding region and other proteoglycan fragments. Biochem J. 1986 Sep 1;238(2):571–580. doi: 10.1042/bj2380571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Recklies A. D., White C., Melching L., Roughley P. J. Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells. Biochem J. 2001 Feb 15;354(Pt 1):17–24. doi: 10.1042/0264-6021:3540017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roughley P. J., Barrett A. J. The degradation of cartilage proteoglycans by tissue proteinases. Proteoglycan structure and its susceptibility to proteolysis. Biochem J. 1977 Dec 1;167(3):629–637. doi: 10.1042/bj1670629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roughley P. J., White R. J. Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J Biol Chem. 1980 Jan 10;255(1):217–224. [PubMed] [Google Scholar]
- Sandy J. D., Thompson V., Doege K., Verscharen C. The intermediates of aggrecanase-dependent cleavage of aggrecan in rat chondrosarcoma cells treated with interleukin-1. Biochem J. 2000 Oct 1;351(Pt 1):161–166. doi: 10.1042/0264-6021:3510161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer I. I., Scott S., Kawka D. W., Bayne E. K., Weidner J. R., Williams H. R., Mumford R. A., Lark M. W., McDonnell J., Christen A. J. Aggrecanase and metalloproteinase-specific aggrecan neo-epitopes are induced in the articular cartilage of mice with collagen II-induced arthritis. Osteoarthritis Cartilage. 1997 Nov;5(6):407–418. doi: 10.1016/s1063-4584(97)80045-3. [DOI] [PubMed] [Google Scholar]
- Sztrolovics R., Alini M., Roughley P. J., Mort J. S. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J. 1997 Aug 15;326(Pt 1):235–241. doi: 10.1042/bj3260235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sztrolovics Robert, White Robert J., Roughley Peter J., Mort John S. The mechanism of aggrecan release from cartilage differs with tissue origin and the agent used to stimulate catabolism. Biochem J. 2002 Mar 1;362(Pt 2):465–472. doi: 10.1042/0264-6021:3620465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiku M. L., Yan Y. P., Chen K. Y. Hydroxyl radical formation in chondrocytes and cartilage as detected by electron paramagnetic resonance spectroscopy using spin trapping reagents. Free Radic Res. 1998 Sep;29(3):177–187. doi: 10.1080/10715769800300211. [DOI] [PubMed] [Google Scholar]
- Yamaguchi Y. Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci. 2000 Feb;57(2):276–289. doi: 10.1007/PL00000690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng J., Luo W., Tanzer M. L. Aggrecan synthesis and secretion. A paradigm for molecular and cellular coordination of multiglobular protein folding and intracellular trafficking. J Biol Chem. 1998 May 22;273(21):12999–13006. doi: 10.1074/jbc.273.21.12999. [DOI] [PubMed] [Google Scholar]
- van Meurs J. B., van Lent P. L., Holthuysen A. E., Singer I. I., Bayne E. K., van den Berg W. B. Kinetics of aggrecanase- and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum. 1999 Jun;42(6):1128–1139. doi: 10.1002/1529-0131(199906)42:6<1128::AID-ANR9>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]