Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 1;362(Pt 2):481–490. doi: 10.1042/0264-6021:3620481

Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome.

Gopal P Sapkota 1, Jérôme Boudeau 1, Maria Deak 1, Agnieszka Kieloch 1, Nick Morrice 1, Dario R Alessi 1
PMCID: PMC1222410  PMID: 11853558

Abstract

Peutz-Jeghers syndrome is an inherited cancer syndrome, which results in a greatly increased risk of developing tumours in those affected. The causative gene encodes a nuclear-localized protein kinase, termed LKB1, which is predicted to function as a tumour suppressor. The mechanism by which LKB1 is regulated in cells is not known, and nor have any of its physiological substrates been identified. Recent studies have demonstrated that LKB1 is phosphorylated in cells. As a first step towards identifying the roles that phosphorylation of LKB1 play, we have mapped the residues that are phosphorylated in human embryonic kidney (HEK)-293 cells, as well as the major in vitro autophosphorylation sites. We demonstrate that LKB1 expressed in HEK-293 cells, in addition to being phosphorylated at Ser(431), a previously characterized phosphorylation site, is also phosphorylated at Ser(31), Ser(325) and Thr(366). Incubation of wild-type LKB1, but not a catalytically inactive mutant, with manganese-ATP in vitro resulted in the phosphorylation of LKB1 at Thr(336) as well as at Thr(366). We were unable to detect autophosphorylation at Thr(189), a site previously claimed to be an LKB1 autophosphorylation site. A catalytically inactive mutant of LKB1 was phosphorylated at Ser(31) and Ser(325) in HEK-293 cells to the same extent as the wild-type enzyme, indicating that LKB1 does not phosphorylate itself at these residues. We show that phosphorylation of LKB1 does not directly affect its nuclear localization or its catalytic activity in vitro, but that its phosphorylation at Thr(336), and perhaps to a lesser extent at Thr(366), inhibits LKB1 from suppressing cell growth.

Full Text

The Full Text of this article is available as a PDF (329.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B. A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996 Dec 2;15(23):6541–6551. [PMC free article] [PubMed] [Google Scholar]
  2. Ching Y. P., Davies S. P., Hardie D. G. Analysis of the specificity of the AMP-activated protein kinase by site-directed mutagenesis of bacterially expressed 3-hydroxy 3-methylglutaryl-CoA reductase, using a single primer variant of the unique-site-elimination method. Eur J Biochem. 1996 May 1;237(3):800–808. doi: 10.1111/j.1432-1033.1996.0800p.x. [DOI] [PubMed] [Google Scholar]
  3. Collins S. P., Reoma J. L., Gamm D. M., Uhler M. D. LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J. 2000 Feb 1;345(Pt 3):673–680. [PMC free article] [PubMed] [Google Scholar]
  4. Dennis P. B., Jaeschke A., Saitoh M., Fowler B., Kozma S. C., Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science. 2001 Nov 2;294(5544):1102–1105. doi: 10.1126/science.1063518. [DOI] [PubMed] [Google Scholar]
  5. Hemminki A., Markie D., Tomlinson I., Avizienyte E., Roth S., Loukola A., Bignell G., Warren W., Aminoff M., Höglund P. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998 Jan 8;391(6663):184–187. doi: 10.1038/34432. [DOI] [PubMed] [Google Scholar]
  6. Hemminki A. The molecular basis and clinical aspects of Peutz-Jeghers syndrome. Cell Mol Life Sci. 1999 May;55(5):735–750. doi: 10.1007/s000180050329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hutchins J. R., Hughes M., Clarke P. R. Substrate specificity determinants of the checkpoint protein kinase Chk1. FEBS Lett. 2000 Jan 21;466(1):91–95. doi: 10.1016/s0014-5793(99)01763-9. [DOI] [PubMed] [Google Scholar]
  8. Jenne D. E., Reimann H., Nezu J., Friedel W., Loff S., Jeschke R., Müller O., Back W., Zimmer M. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998 Jan;18(1):38–43. doi: 10.1038/ng0198-38. [DOI] [PubMed] [Google Scholar]
  9. Karuman P., Gozani O., Odze R. D., Zhou X. C., Zhu H., Shaw R., Brien T. P., Bozzuto C. D., Ooi D., Cantley L. C. The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell. 2001 Jun;7(6):1307–1319. doi: 10.1016/s1097-2765(01)00258-1. [DOI] [PubMed] [Google Scholar]
  10. Leighton I. A., Dalby K. N., Caudwell F. B., Cohen P. T., Cohen P. Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: the N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS Lett. 1995 Nov 20;375(3):289–293. doi: 10.1016/0014-5793(95)01170-j. [DOI] [PubMed] [Google Scholar]
  11. Marignani P. A., Kanai F., Carpenter C. L. LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest. J Biol Chem. 2001 Jul 9;276(35):32415–32418. doi: 10.1074/jbc.C100207200. [DOI] [PubMed] [Google Scholar]
  12. Mehenni H., Gehrig C., Nezu J., Oku A., Shimane M., Rossier C., Guex N., Blouin J. L., Scott H. S., Antonarakis S. E. Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Hum Genet. 1998 Dec;63(6):1641–1650. doi: 10.1086/302159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Midgley C. A., Fisher C. J., Bártek J., Vojtesek B., Lane D., Barnes D. M. Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in Escherichia coli. J Cell Sci. 1992 Jan;101(Pt 1):183–189. doi: 10.1242/jcs.101.1.183. [DOI] [PubMed] [Google Scholar]
  14. Obata T., Yaffe M. B., Leparc G. G., Piro E. T., Maegawa H., Kashiwagi A., Kikkawa R., Cantley L. C. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem. 2000 Nov 17;275(46):36108–36115. doi: 10.1074/jbc.M005497200. [DOI] [PubMed] [Google Scholar]
  15. Sapkota G. P., Kieloch A., Lizcano J. M., Lain S., Arthur J. S., Williams M. R., Morrice N., Deak M., Alessi D. R. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem. 2001 Jan 31;276(22):19469–19482. doi: 10.1074/jbc.M009953200. [DOI] [PubMed] [Google Scholar]
  16. Smith D. P., Rayter S. I., Niederlander C., Spicer J., Jones C. M., Ashworth A. LIP1, a cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1. Hum Mol Genet. 2001 Dec 1;10(25):2869–2877. doi: 10.1093/hmg/10.25.2869. [DOI] [PubMed] [Google Scholar]
  17. Smith D. P., Spicer J., Smith A., Swift S., Ashworth A. The mouse Peutz-Jeghers syndrome gene Lkb1 encodes a nuclear protein kinase. Hum Mol Genet. 1999 Aug;8(8):1479–1485. doi: 10.1093/hmg/8.8.1479. [DOI] [PubMed] [Google Scholar]
  18. Stokoe D., Campbell D. G., Nakielny S., Hidaka H., Leevers S. J., Marshall C., Cohen P. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 1992 Nov;11(11):3985–3994. doi: 10.1002/j.1460-2075.1992.tb05492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stokoe D., Caudwell B., Cohen P. T., Cohen P. The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2. Biochem J. 1993 Dec 15;296(Pt 3):843–849. doi: 10.1042/bj2960843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Su J. Y., Erikson E., Maller J. L. Cloning and characterization of a novel serine/threonine protein kinase expressed in early Xenopus embryos. J Biol Chem. 1996 Jun 14;271(24):14430–14437. doi: 10.1074/jbc.271.24.14430. [DOI] [PubMed] [Google Scholar]
  21. Tiainen M., Ylikorkala A., Mäkelä T. P. Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9248–9251. doi: 10.1073/pnas.96.16.9248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Watts J. L., Morton D. G., Bestman J., Kemphues K. J. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development. 2000 Apr;127(7):1467–1475. doi: 10.1242/dev.127.7.1467. [DOI] [PubMed] [Google Scholar]
  23. Westerman A. M., Entius M. M., de Baar E., Boor P. P., Koole R., van Velthuysen M. L., Offerhaus G. J., Lindhout D., de Rooij F. W., Wilson J. H. Peutz-Jeghers syndrome: 78-year follow-up of the original family. Lancet. 1999 Apr 10;353(9160):1211–1215. doi: 10.1016/s0140-6736(98)08018-0. [DOI] [PubMed] [Google Scholar]
  24. Yaffe M. B., Leparc G. G., Lai J., Obata T., Volinia S., Cantley L. C. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol. 2001 Apr;19(4):348–353. doi: 10.1038/86737. [DOI] [PubMed] [Google Scholar]
  25. Ylikorkala A., Rossi D. J., Korsisaari N., Luukko K., Alitalo K., Henkemeyer M., Mäkelä T. P. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science. 2001 Aug 17;293(5533):1323–1326. doi: 10.1126/science.1062074. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES