Abstract
The CHO (Chinese hamster ovary) glycosylation mutant cell line, B3F7, transfers the truncated glycan Glc(3)Man(5)GlcNAc(2) on to nascent proteins. After deglucosylation, the resulting Man(5)GlcNAc(2) glycan is subjected to two reciprocal enzymic processes: the action of an endoplasmic-reticulum (ER) kifunensine-sensitive alpha1,2-mannosidase activity to yield a Man(4)GlcNAc(2) glycan, and the reglucosylation involved in the quality-control system which ensures that only correctly folded glycoproteins leave the ER. We show that the recombinant secreted alkaline phosphatase (SeAP) produced in stably transfected B3F7 cells, is co-immunoprecipitated with the GRP78 (glucose-regulated protein 78), a protein marker of the unfolded protein response (UPR). The level of GRP78 transcription has been evaluated by reverse transcription-PCR (RT-PCR) and we demonstrate that B3F7 cells present a constitutively higher level of UPR in the absence of inductors, compared with Pro(-5) cells. Interestingly, a decrease was observed in the UPR and an increase in SeAP secretion in the kifunensine-treated B3F7 cells. Altogether, these data highlight the relationships between the glycan structure, the quality control system and the UPR. Moreover, they support the idea that a specific demannosylation step is a key event of the glycoprotein quality control in B3F7 cells.
Full Text
The Full Text of this article is available as a PDF (265.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonifacino J. S., Weissman A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol. 1998;14:19–57. doi: 10.1146/annurev.cellbio.14.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brucato S., Harduin-Lepers A., Godard F., Bocquet J., Villers C. Expression of glypican-1, syndecan-1 and syndecan-4 mRNAs protein kinase C-regulated in rat immature Sertoli cells by semi-quantitative RT-PCR analysis. Biochim Biophys Acta. 2000 Mar 6;1474(1):31–40. doi: 10.1016/s0304-4165(00)00006-4. [DOI] [PubMed] [Google Scholar]
- Cabral C. M., Choudhury P., Liu Y., Sifers R. N. Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J Biol Chem. 2000 Aug 11;275(32):25015–25022. doi: 10.1074/jbc.M910172199. [DOI] [PubMed] [Google Scholar]
- Cacan R., Duvet S., Labiau O., Verbert A., Krag S. S. Monoglucosylated oligomannosides are released during the degradation process of newly synthesized glycoproteins. J Biol Chem. 2001 Apr 6;276(25):22307–22312. doi: 10.1074/jbc.M101077200. [DOI] [PubMed] [Google Scholar]
- Casagrande R., Stern P., Diehn M., Shamu C., Osario M., Zúiga M., Brown P. O., Ploegh H. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol Cell. 2000 Apr;5(4):729–735. doi: 10.1016/s1097-2765(00)80251-8. [DOI] [PubMed] [Google Scholar]
- Chapman R., Sidrauski C., Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu Rev Cell Dev Biol. 1998;14:459–485. doi: 10.1146/annurev.cellbio.14.1.459. [DOI] [PubMed] [Google Scholar]
- Doerrler W. T., Lehrman M. A. Regulation of the dolichol pathway in human fibroblasts by the endoplasmic reticulum unfolded protein response. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13050–13055. doi: 10.1073/pnas.96.23.13050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duvet S., Chirat F., Mir A. M., Verbert A., Dubuisson J., Cacan R. Reciprocal relationship between alpha1,2 mannosidase processing and reglucosylation in the rough endoplasmic reticulum of Man-P-Dol deficient cells. Eur J Biochem. 2000 Feb;267(4):1146–1152. doi: 10.1046/j.1432-1327.2000.01111.x. [DOI] [PubMed] [Google Scholar]
- Ermonval M., Cacan R., Gorgas K., Haas I. G., Verbert A., Buttin G. Differential fate of glycoproteins carrying a monoglucosylated form of truncated N-glycan in a new CHO line, MadIA214214, selected for a thermosensitive secretory defect. J Cell Sci. 1997 Feb;110(Pt 3):323–336. doi: 10.1242/jcs.110.3.323. [DOI] [PubMed] [Google Scholar]
- Ermonval M., Duvet S., Zonneveld D., Cacan R., Buttin G., Braakman I. Truncated N-glycans affect protein folding in the ER of CHO-derived mutant cell lines without preventing calnexin binding. Glycobiology. 2000 Jan;10(1):77–87. doi: 10.1093/glycob/10.1.77. [DOI] [PubMed] [Google Scholar]
- Ermonval M., Kitzmüller C., Mir A. M., Cacan R., Ivessa N. E. N-glycan structure of a short-lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation. Glycobiology. 2001 Jul;11(7):565–576. doi: 10.1093/glycob/11.7.565. [DOI] [PubMed] [Google Scholar]
- Friedlander R., Jarosch E., Urban J., Volkwein C., Sommer T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol. 2000 Jul;2(7):379–384. doi: 10.1038/35017001. [DOI] [PubMed] [Google Scholar]
- Hebert D. N., Zhang J. X., Chen W., Foellmer B., Helenius A. The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol. 1997 Nov 3;139(3):613–623. doi: 10.1083/jcb.139.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A., Aebi M. Intracellular functions of N-linked glycans. Science. 2001 Mar 23;291(5512):2364–2369. doi: 10.1126/science.291.5512.2364. [DOI] [PubMed] [Google Scholar]
- Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell. 1994 Mar;5(3):253–265. doi: 10.1091/mbc.5.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Choudhury P., Cabral C. M., Sifers R. N. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem. 1999 Feb 26;274(9):5861–5867. doi: 10.1074/jbc.274.9.5861. [DOI] [PubMed] [Google Scholar]
- Marchal I., Mir A. M., Kmiécik D., Verbert A., Cacan R. Use of inhibitors to characterize intermediates in the processing of N-glycans synthesized by insect cells: a metabolic study with Sf9 cell line. Glycobiology. 1999 Jul;9(7):645–654. doi: 10.1093/glycob/9.7.645. [DOI] [PubMed] [Google Scholar]
- Marcus N. Y., Perlmutter D. H. Glucosidase and mannosidase inhibitors mediate increased secretion of mutant alpha1 antitrypsin Z. J Biol Chem. 2000 Jan 21;275(3):1987–1992. doi: 10.1074/jbc.275.3.1987. [DOI] [PubMed] [Google Scholar]
- Ng D. T., Spear E. D., Walter P. The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol. 2000 Jul 10;150(1):77–88. doi: 10.1083/jcb.150.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parodi A. J. Protein glucosylation and its role in protein folding. Annu Rev Biochem. 2000;69:69–93. doi: 10.1146/annurev.biochem.69.1.69. [DOI] [PubMed] [Google Scholar]
- Parodi A. J. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J. 2000 May 15;348(Pt 1):1–13. [PMC free article] [PubMed] [Google Scholar]
- Patil C., Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol. 2001 Jun;13(3):349–355. doi: 10.1016/s0955-0674(00)00219-2. [DOI] [PubMed] [Google Scholar]
- Ray M. K., Yang J., Sundaram S., Stanley P. A novel glycosylation phenotype expressed by Lec23, a Chinese hamster ovary mutant deficient in alpha-glucosidase I. J Biol Chem. 1991 Dec 5;266(34):22818–22825. [PubMed] [Google Scholar]
- Tokunaga F., Brostrom C., Koide T., Arvan P. Endoplasmic reticulum (ER)-associated degradation of misfolded N-linked glycoproteins is suppressed upon inhibition of ER mannosidase I. J Biol Chem. 2000 Dec 29;275(52):40757–40764. doi: 10.1074/jbc.M001073200. [DOI] [PubMed] [Google Scholar]
- Vassilakos A., Michalak M., Lehrman M. A., Williams D. B. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry. 1998 Mar 10;37(10):3480–3490. doi: 10.1021/bi972465g. [DOI] [PubMed] [Google Scholar]
- Villers C., Cacan R., Mir A. M., Labiau O., Verbert A. Release of oligomannoside-type glycans as a marker of the degradation of newly synthesized glycoproteins. Biochem J. 1994 Feb 15;298(Pt 1):135–142. doi: 10.1042/bj2980135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson C. M., Farmery M. R., Bulleid N. J. Pivotal role of calnexin and mannose trimming in regulating the endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain. J Biol Chem. 2000 Jul 14;275(28):21224–21232. doi: 10.1074/jbc.M000567200. [DOI] [PubMed] [Google Scholar]
- Wooden S. K., Li L. J., Navarro D., Qadri I., Pereira L., Lee A. S. Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol Cell Biol. 1991 Nov;11(11):5612–5623. doi: 10.1128/mcb.11.11.5612. [DOI] [PMC free article] [PubMed] [Google Scholar]