Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 15;362(Pt 3):545–551. doi: 10.1042/0264-6021:3620545

Substrate access channel topology in membrane-bound prostacyclin synthase.

Hui Deng 1, Aimin Huang 1, Shui-Ping So 1, Yue-Zhen Lin 1, Ke-He Ruan 1
PMCID: PMC1222417  PMID: 11879180

Abstract

Results from our molecular-modelling and site-directed-mutagenesis studies of prostaglandin I(2) synthase (PGIS) have suggested that the large PGIS cytoplasmic domain is anchored to the endoplasmic reticulum (ER) membrane by the N-terminal segment in a way that orients the substrate access channel opening to face the membrane. To test this hypothesis we have explored the accessibility of the PGIS substrate channel opening to site-specific antibodies. The working three-dimensional PGIS model constructed by protein homology modelling was used to predict surface portions near the substrate access channel opening. Two peptides corresponding to the surface immediately near the opening [residues 66-75 (P66-75) and 95-116 (P95-116)], and two other peptides corresponding to the surface about 10-20 A (1 A=0.1 nm) away from the opening [residues 366-382 (P366-382) and 472-482 (P472-482)] were used to prepare site-specific antibodies. All four antipeptide antibodies specifically recognized the synthetic segments of human PGIS and recombinant PGIS, as shown by binding assays and Western-blot analysis. The site-specific antibodies were used to probe the accessibility of the substrate access channel opening in transiently transfected COS-1 cells expressing recombinant human PGIS, and in spontaneously transformed human endothelial cell line ECV cells expressing endogenous human PGIS. Immunofluorescence staining was performed for cells selectively permeabilized with streptolysin O and for cells whose membranes were permeabilized with detergent. Antibodies to peptides in the immediate vicinity of the substrate channel (P66-75 and P95-116) bound to their targets only after general permeabilization with Triton X-100. In contrast, the two antibodies to peptides further from the channel opening (P366-382 and P472-482) bound to their targets even in cells with intact ER membranes. These observations support our topology model in which the PGIS substrate access channel opening is positioned close to the ER membrane.

Full Text

The Full Text of this article is available as a PDF (230.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Gailany K. A., Houston J. B., Bridges J. W. The role of substrate lipophilicity in determining type 1 microsomal P450 binding characteristics. Biochem Pharmacol. 1978 Mar 1;27(5):783–788. doi: 10.1016/0006-2952(78)90521-x. [DOI] [PubMed] [Google Scholar]
  2. Centeno F., Gutiérrez-Merino C. Location of functional centers in the microsomal cytochrome P450 system. Biochemistry. 1992 Sep 15;31(36):8473–8481. doi: 10.1021/bi00151a013. [DOI] [PubMed] [Google Scholar]
  3. DeWitt D. L., Smith W. L. Purification of prostacyclin synthase from bovine aorta by immunoaffinity chromatography. Evidence that the enzyme is a hemoprotein. J Biol Chem. 1983 Mar 10;258(5):3285–3293. [PubMed] [Google Scholar]
  4. Eling T. E., Glasgow W. C., Curtis J. F., Hubbard W. C., Handler J. A. Studies on the reduction of endogenously generated prostaglandin G2 by prostaglandin H synthase. J Biol Chem. 1991 Jul 5;266(19):12348–12355. [PubMed] [Google Scholar]
  5. Hara S., Miyata A., Yokoyama C., Inoue H., Brugger R., Lottspeich F., Ullrich V., Tanabe T. Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. J Biol Chem. 1994 Aug 5;269(31):19897–19903. [PubMed] [Google Scholar]
  6. Ishikawa E., Imagawa M., Hashida S., Yoshitake S., Hamaguchi Y., Ueno T. Enzyme-labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining. J Immunoassay. 1983;4(3):209–327. doi: 10.1080/15321818308057011. [DOI] [PubMed] [Google Scholar]
  7. Kulmacz R. J., Wu K. K. Topographic studies of microsomal and pure prostaglandin H synthase. Arch Biochem Biophys. 1989 Feb 1;268(2):502–515. doi: 10.1016/0003-9861(89)90317-2. [DOI] [PubMed] [Google Scholar]
  8. Kurumbail R. G., Stevens A. M., Gierse J. K., McDonald J. J., Stegeman R. A., Pak J. Y., Gildehaus D., Miyashiro J. M., Penning T. D., Seibert K. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996 Dec 19;384(6610):644–648. doi: 10.1038/384644a0. [DOI] [PubMed] [Google Scholar]
  9. Lin Y. Z., Deng H., Ruan K. H. Topology of catalytic portion of prostaglandin I(2) synthase: identification by molecular modeling-guided site-specific antibodies. Arch Biochem Biophys. 2000 Jul 15;379(2):188–197. doi: 10.1006/abbi.2000.1892. [DOI] [PubMed] [Google Scholar]
  10. Lin Y., Wu K. K., Ruan K. H. Characterization of the secondary structure and membrane interaction of the putative membrane anchor domains of prostaglandin I2 synthase and cytochrome P450 2C1. Arch Biochem Biophys. 1998 Apr 1;352(1):78–84. doi: 10.1006/abbi.1998.0599. [DOI] [PubMed] [Google Scholar]
  11. Miyata A., Hara S., Yokoyama C., Inoue H., Ullrich V., Tanabe T. Molecular cloning and expression of human prostacyclin synthase. Biochem Biophys Res Commun. 1994 May 16;200(3):1728–1734. doi: 10.1006/bbrc.1994.1652. [DOI] [PubMed] [Google Scholar]
  12. Moncada S., Vane J. R. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev. 1978 Sep;30(3):293–331. [PubMed] [Google Scholar]
  13. Nelson D. R., Strobel H. W. On the membrane topology of vertebrate cytochrome P-450 proteins. J Biol Chem. 1988 May 5;263(13):6038–6050. [PubMed] [Google Scholar]
  14. Otto J. C., Smith W. L. The orientation of prostaglandin endoperoxide synthases-1 and -2 in the endoplasmic reticulum. J Biol Chem. 1994 Aug 5;269(31):19868–19875. [PubMed] [Google Scholar]
  15. Parry G., Palmer D. N., Williams D. J. Ligand partitioning into membranes: its significance in determining Km and Ks values for cytochrome P-450 and other membrane bound receptors and enzymes. FEBS Lett. 1976 Aug 15;67(2):123–129. doi: 10.1016/0014-5793(76)80348-1. [DOI] [PubMed] [Google Scholar]
  16. Pereira B., Wu K. K., Wang L. H. Molecular cloning and characterization of bovine prostacyclin synthase. Biochem Biophys Res Commun. 1994 Aug 30;203(1):59–66. doi: 10.1006/bbrc.1994.2148. [DOI] [PubMed] [Google Scholar]
  17. Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
  18. Ravichandran K. G., Boddupalli S. S., Hasermann C. A., Peterson J. A., Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science. 1993 Aug 6;261(5122):731–736. doi: 10.1126/science.8342039. [DOI] [PubMed] [Google Scholar]
  19. Ren Y., Walker C., Loose-Mitchell D. S., Deng J., Ruan K. H., Kulmacz R. J. Topology of prostaglandin H synthase-1 in the endoplasmic reticulum membrane. Arch Biochem Biophys. 1995 Oct 20;323(1):205–214. doi: 10.1006/abbi.1995.0027. [DOI] [PubMed] [Google Scholar]
  20. Ruan K. H., Li P., Kulmacz R. J., Wu K. K. Characterization of the structure and membrane interaction of NH2-terminal domain of thromboxane A2 synthase. J Biol Chem. 1994 Aug 19;269(33):20938–20942. [PubMed] [Google Scholar]
  21. Ruan K. H., Milfeld K., Kulmacz R. J., Wu K. K. Comparison of the construction of a 3-D model for human thromboxane synthase using P450cam and BM-3 as templates: implications for the substrate binding pocket. Protein Eng. 1994 Nov;7(11):1345–1351. doi: 10.1093/protein/7.11.1345. [DOI] [PubMed] [Google Scholar]
  22. Ruan K. H., Stiles B. G., Atassi M. Z. The short-neurotoxin-binding regions on the alpha-chain of human and Torpedo californica acetylcholine receptors. Biochem J. 1991 Mar 15;274(Pt 3):849–854. doi: 10.1042/bj2740849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ruan K. H., Wang L. H., Wu K. K., Kulmacz R. J. Amino-terminal topology of thromboxane synthase in the endoplasmic reticulum. J Biol Chem. 1993 Sep 15;268(26):19483–19490. [PubMed] [Google Scholar]
  24. Ruan K., Hashida S., Yoshitake S., Ishikawa E., Wakisaka O., Yamamoto Y., Ichioka T., Nakajima K. A micro-scale affinity-purification of Fab'-horseradish peroxidase conjugates and its use for sandwich enzyme immunoassay of insulin in human serum. Clin Chim Acta. 1985 Apr 15;147(2):167–172. doi: 10.1016/0009-8981(85)90078-6. [DOI] [PubMed] [Google Scholar]
  25. Shyue S. K., Ruan K. H., Wang L. H., Wu K. K. Prostacyclin synthase active sites. Identification by molecular modeling-guided site-directed mutagenesis. J Biol Chem. 1997 Feb 7;272(6):3657–3662. doi: 10.1074/jbc.272.6.3657. [DOI] [PubMed] [Google Scholar]
  26. Ullrich V., Castle L., Weber P. Spectral evidence for the cytochrome P450 nature of prostacyclin synthetase. Biochem Pharmacol. 1981 Jul 15;30(14):2033–2036. doi: 10.1016/0006-2952(81)90218-5. [DOI] [PubMed] [Google Scholar]
  27. Wang L. H., Matijevic-Aleksic N., Hsu P. Y., Ruan K. H., Wu K. K., Kulmacz R. J. Identification of thromboxane A2 synthase active site residues by molecular modeling-guided site-directed mutagenesis. J Biol Chem. 1996 Aug 16;271(33):19970–19975. doi: 10.1074/jbc.271.33.19970. [DOI] [PubMed] [Google Scholar]
  28. Wu K. K., Thiagarajan P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med. 1996;47:315–331. doi: 10.1146/annurev.med.47.1.315. [DOI] [PubMed] [Google Scholar]
  29. Zvelebil M. J., Wolf C. R., Sternberg M. J. A predicted three-dimensional structure of human cytochrome P450: implications for substrate specificity. Protein Eng. 1991 Feb;4(3):271–282. doi: 10.1093/protein/4.3.271. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES