Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 15;362(Pt 3):561–571. doi: 10.1042/0264-6021:3620561

Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress.

Christopher J Dougherty 1, Lori A Kubasiak 1, Howard Prentice 1, Peter Andreka 1, Nanette H Bishopric 1, Keith A Webster 1
PMCID: PMC1222419  PMID: 11879182

Abstract

Reperfusion injury occurs when ischaemic tissue is reperfused. It involves the generation and release of reactive oxygen that activates numerous signalling pathways and initiates cell death. Exposure of isolated cardiac myocytes to chronic hypoxia followed by reoxygenation results in the early activation of c-Jun N-terminal kinase (JNK) and death by apoptosis of approx. 30% of the myocytes. Although JNK activation has been described in a number of models of ischaemia/reperfusion, the contribution of JNK activation to cell fate has not been established. Here we report that the activation of JNK by reoxygenation correlates with myocyte survival. Transfection of myocytes with JNK pathway interfering plasmid vectors or infection with adenoviral vectors support the hypothesis that JNK is protective. Transfection or infection with JNK inhibitory mutants increased the rates of apoptosis by almost 2-fold compared with control cultures grown aerobically or subjected to hypoxia and reoxygenation. Caspase 9 activity, measured by LEHD cleavage, increased >3-fold during reoxygenation and this activity was enhanced significantly at all times in cultures infected with dominant negative JNK adenovirus. Hypoxia-reoxygenation mediated a biphasic (2.6- and 2.9-fold) activation of p38 mitogen-activated protein kinase, as well as a small increase of tumour necrosis factor alpha (TNFalpha) secretion, but treatments with the p38 MAPK-specific inhibitor SB203580 or saturating levels of a TNFalpha-1 blocking antibody provided only partial protection against apoptosis. The results suggest that JNK activation is protective and that the pathway is largely independent of p38 MAPK or secreted TNFalpha.

Full Text

The Full Text of this article is available as a PDF (340.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida E. A., Ilić D., Han Q., Hauck C. R., Jin F., Kawakatsu H., Schlaepfer D. D., Damsky C. H. Matrix survival signaling: from fibronectin via focal adhesion kinase to c-Jun NH(2)-terminal kinase. J Cell Biol. 2000 May 1;149(3):741–754. doi: 10.1083/jcb.149.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreka P., Zang J., Dougherty C., Slepak T. I., Webster K. A., Bishopric N. H. Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res. 2001 Feb 16;88(3):305–312. doi: 10.1161/01.res.88.3.305. [DOI] [PubMed] [Google Scholar]
  3. Assefa Z., Vantieghem A., Declercq W., Vandenabeele P., Vandenheede J. R., Merlevede W., de Witte P., Agostinis P. The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin. J Biol Chem. 1999 Mar 26;274(13):8788–8796. doi: 10.1074/jbc.274.13.8788. [DOI] [PubMed] [Google Scholar]
  4. Bishopric N. H., Andreka P., Slepak T., Webster K. A. Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol. 2001 Apr;1(2):141–150. doi: 10.1016/s1471-4892(01)00032-7. [DOI] [PubMed] [Google Scholar]
  5. Bishopric N. H., Zeng G. Q., Sato B., Webster K. A. Adenovirus E1A inhibits cardiac myocyte-specific gene expression through its amino terminus. J Biol Chem. 1997 Aug 15;272(33):20584–20594. doi: 10.1074/jbc.272.33.20584. [DOI] [PubMed] [Google Scholar]
  6. Bossenmeyer-Pourié C., Koziel V., Daval J. L. CPP32/CASPASE-3-like proteases in hypoxia-induced apoptosis in developing brain neurons. Brain Res Mol Brain Res. 1999 Aug 25;71(2):225–237. doi: 10.1016/s0169-328x(99)00190-4. [DOI] [PubMed] [Google Scholar]
  7. Breitschopf K., Haendeler J., Malchow P., Zeiher A. M., Dimmeler S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol. 2000 Mar;20(5):1886–1896. doi: 10.1128/mcb.20.5.1886-1896.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buja L. M. Modulation of the myocardial response to ischemia. Lab Invest. 1998 Nov;78(11):1345–1373. [PubMed] [Google Scholar]
  9. Clerk A., Fuller S. J., Michael A., Sugden P. H. Stimulation of "stress-regulated" mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J Biol Chem. 1998 Mar 27;273(13):7228–7234. doi: 10.1074/jbc.273.13.7228. [DOI] [PubMed] [Google Scholar]
  10. Coso O. A., Chiariello M., Yu J. C., Teramoto H., Crespo P., Xu N., Miki T., Gutkind J. S. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell. 1995 Jun 30;81(7):1137–1146. doi: 10.1016/s0092-8674(05)80018-2. [DOI] [PubMed] [Google Scholar]
  11. Crenesse D., Gugenheim J., Hornoy J., Tornieri K., Laurens M., Cambien B., Lenegrate G., Cursio R., De Souza G., Auberger P. Protein kinase activation by warm and cold hypoxia- reoxygenation in primary-cultured rat hepatocytes-JNK(1)/SAPK(1) involvement in apoptosis. Hepatology. 2000 Nov;32(5):1029–1036. doi: 10.1053/jhep.2000.19065. [DOI] [PubMed] [Google Scholar]
  12. Deng X., Xiao L., Lang W., Gao F., Ruvolo P., May W. S., Jr Novel role for JNK as a stress-activated Bcl2 kinase. J Biol Chem. 2001 Apr 25;276(26):23681–23688. doi: 10.1074/jbc.M100279200. [DOI] [PubMed] [Google Scholar]
  13. Diao J., Khine A. A., Sarangi F., Hsu E., Iorio C., Tibbles L. A., Woodgett J. R., Penninger J., Richardson C. D. X protein of hepatitis B virus inhibits Fas-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway. J Biol Chem. 2000 Nov 30;276(11):8328–8340. doi: 10.1074/jbc.M006026200. [DOI] [PubMed] [Google Scholar]
  14. Dong Z., Saikumar P., Patel Y., Weinberg J. M., Venkatachalam M. A. Serine protease inhibitors suppress cytochrome c-mediatedcaspase-9 activation and apoptosis during hypoxia-reoxygenation. Biochem J. 2000 May 1;347(Pt 3):669–677. [PMC free article] [PubMed] [Google Scholar]
  15. Dérijard B., Hibi M., Wu I. H., Barrett T., Su B., Deng T., Karin M., Davis R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994 Mar 25;76(6):1025–1037. doi: 10.1016/0092-8674(94)90380-8. [DOI] [PubMed] [Google Scholar]
  16. Fliss H., Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996 Nov;79(5):949–956. doi: 10.1161/01.res.79.5.949. [DOI] [PubMed] [Google Scholar]
  17. Franklin R. A., McCubrey J. A. Kinases: positive and negative regulators of apoptosis. Leukemia. 2000 Dec;14(12):2019–2034. doi: 10.1038/sj.leu.2401967. [DOI] [PubMed] [Google Scholar]
  18. Gottlieb R. A., Burleson K. O., Kloner R. A., Babior B. M., Engler R. L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994 Oct;94(4):1621–1628. doi: 10.1172/JCI117504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harding T. C., Xue L., Bienemann A., Haywood D., Dickens M., Tolkovsky A. M., Uney J. B. Inhibition of JNK by overexpression of the JNL binding domain of JIP-1 prevents apoptosis in sympathetic neurons. J Biol Chem. 2000 Dec 19;276(7):4531–4534. doi: 10.1074/jbc.C000815200. [DOI] [PubMed] [Google Scholar]
  20. He H., Li H. L., Lin A., Gottlieb R. A. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ. 1999 Oct;6(10):987–991. doi: 10.1038/sj.cdd.4400572. [DOI] [PubMed] [Google Scholar]
  21. He T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2509–2514. doi: 10.1073/pnas.95.5.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hernandez O. M., Discher D. J., Bishopric N. H., Webster K. A. Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes. Circ Res. 2000 Feb 4;86(2):198–204. doi: 10.1161/01.res.86.2.198. [DOI] [PubMed] [Google Scholar]
  23. Hreniuk D., Garay M., Gaarde W., Monia B. P., McKay R. A., Cioffi C. L. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol. 2001 Apr;59(4):867–874. doi: 10.1124/mol.59.4.867. [DOI] [PubMed] [Google Scholar]
  24. Ing D. J., Zang J., Dzau V. J., Webster K. A., Bishopric N. H. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res. 1999 Jan 8;84(1):21–33. doi: 10.1161/01.res.84.1.21. [DOI] [PubMed] [Google Scholar]
  25. Johnson N. L., Gardner A. M., Diener K. M., Lange-Carter C. A., Gleavy J., Jarpe M. B., Minden A., Karin M., Zon L. I., Johnson G. L. Signal transduction pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death. J Biol Chem. 1996 Feb 9;271(6):3229–3237. doi: 10.1074/jbc.271.6.3229. [DOI] [PubMed] [Google Scholar]
  26. Kajstura J., Cheng W., Reiss K., Clark W. A., Sonnenblick E. H., Krajewski S., Reed J. C., Olivetti G., Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest. 1996 Jan;74(1):86–107. [PubMed] [Google Scholar]
  27. Kharbanda S., Saxena S., Yoshida K., Pandey P., Kaneki M., Wang Q., Cheng K., Chen Y. N., Campbell A., Sudha T. Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem. 2000 Jan 7;275(1):322–327. doi: 10.1074/jbc.275.1.322. [DOI] [PubMed] [Google Scholar]
  28. Khwaja A., Downward J. Lack of correlation between activation of Jun-NH2-terminal kinase and induction of apoptosis after detachment of epithelial cells. J Cell Biol. 1997 Nov 17;139(4):1017–1023. doi: 10.1083/jcb.139.4.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kuan C. Y., Yang D. D., Samanta Roy D. R., Davis R. J., Rakic P., Flavell R. A. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron. 1999 Apr;22(4):667–676. doi: 10.1016/s0896-6273(00)80727-8. [DOI] [PubMed] [Google Scholar]
  30. Kusuoka H., Marban E. Cellular mechanisms of myocardial stunning. Annu Rev Physiol. 1992;54:243–256. doi: 10.1146/annurev.ph.54.030192.001331. [DOI] [PubMed] [Google Scholar]
  31. Laderoute K. R., Webster K. A. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res. 1997 Mar;80(3):336–344. doi: 10.1161/01.res.80.3.336. [DOI] [PubMed] [Google Scholar]
  32. Liu W., Kato M., Akhand A. A., Hayakawa A., Suzuki H., Miyata T., Kurokawa K., Hotta Y., Ishikawa N., Nakashima I. 4-hydroxynonenal induces a cellular redox status-related activation of the caspase cascade for apoptotic cell death. J Cell Sci. 2000 Feb;113(Pt 4):635–641. doi: 10.1242/jcs.113.4.635. [DOI] [PubMed] [Google Scholar]
  33. Mackay K., Mochly-Rosen D. An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J Biol Chem. 1999 Mar 5;274(10):6272–6279. doi: 10.1074/jbc.274.10.6272. [DOI] [PubMed] [Google Scholar]
  34. Masuda Y., Nakaya M., Aiuchi T., Hashimoto S., Nakajo S., Nakaya K. The mechanism of geranylgeraniol-induced apoptosis involves activation, by a caspase-3-like protease, of a c-jun N-terminal kinase signaling cascade and differs from mechanisms of apoptosis induced by conventional chemotherapeutic drugs. Leuk Res. 2000 Nov;24(11):937–950. doi: 10.1016/s0145-2126(00)00066-7. [DOI] [PubMed] [Google Scholar]
  35. Matsui T., Li L., del MonteF, Fukui Y., Franke T. F., Hajjar R. J., Rosenzweig A. Adenoviral gene transfer of activated phosphatidylinositol 3'-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation. 1999 Dec 7;100(23):2373–2379. doi: 10.1161/01.cir.100.23.2373. [DOI] [PubMed] [Google Scholar]
  36. Meldrum D. R. Tumor necrosis factor in the heart. Am J Physiol. 1998 Mar;274(3 Pt 2):R577–R595. doi: 10.1152/ajpregu.1998.274.3.R577. [DOI] [PubMed] [Google Scholar]
  37. Minamino T., Yujiri T., Papst P. J., Chan E. D., Johnson G. L., Terada N. MEKK1 suppresses oxidative stress-induced apoptosis of embryonic stem cell-derived cardiac myocytes. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15127–15132. doi: 10.1073/pnas.96.26.15127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ohno M., Takemura G., Ohno A., Misao J., Hayakawa Y., Minatoguchi S., Fujiwara T., Fujiwara H. "Apoptotic" myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation. 1998 Oct 6;98(14):1422–1430. doi: 10.1161/01.cir.98.14.1422. [DOI] [PubMed] [Google Scholar]
  39. Pham F. H., Sugden P. H., Clerk A. Regulation of protein kinase B and 4E-BP1 by oxidative stress in cardiac myocytes. Circ Res. 2000 Jun 23;86(12):1252–1258. doi: 10.1161/01.res.86.12.1252. [DOI] [PubMed] [Google Scholar]
  40. Rocha S., Soengas M. S., Lowe S. W., Glanzmann C., Fabbro D., Winterhalter K., Bodis S., Pruschy M. Protein kinase C inhibitor and irradiation-induced apoptosis: relevance of the cytochrome c-mediated caspase-9 death pathway. Cell Growth Differ. 2000 Sep;11(9):491–499. [PubMed] [Google Scholar]
  41. Sabapathy K., Jochum W., Hochedlinger K., Chang L., Karin M., Wagner E. F. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev. 1999 Dec;89(1-2):115–124. doi: 10.1016/s0925-4773(99)00213-0. [DOI] [PubMed] [Google Scholar]
  42. Saikumar P., Dong Z., Patel Y., Hall K., Hopfer U., Weinberg J. M., Venkatachalam M. A. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene. 1998 Dec 31;17(26):3401–3415. doi: 10.1038/sj.onc.1202590. [DOI] [PubMed] [Google Scholar]
  43. Saikumar P., Dong Z., Weinberg J. M., Venkatachalam M. A. Mechanisms of cell death in hypoxia/reoxygenation injury. Oncogene. 1998 Dec 24;17(25):3341–3349. doi: 10.1038/sj.onc.1202579. [DOI] [PubMed] [Google Scholar]
  44. Shaulian E., Karin M. AP-1 in cell proliferation and survival. Oncogene. 2001 Apr 30;20(19):2390–2400. doi: 10.1038/sj.onc.1204383. [DOI] [PubMed] [Google Scholar]
  45. Stepczynska A., Lauber K., Engels I. H., Janssen O., Kabelitz D., Wesselborg S., Schulze-Osthoff K. Staurosporine and conventional anticancer drugs induce overlapping, yet distinct pathways of apoptosis and caspase activation. Oncogene. 2001 Mar 8;20(10):1193–1202. doi: 10.1038/sj.onc.1204221. [DOI] [PubMed] [Google Scholar]
  46. Sugden P. H., Clerk A. "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res. 1998 Aug 24;83(4):345–352. doi: 10.1161/01.res.83.4.345. [DOI] [PubMed] [Google Scholar]
  47. Tamatani M., Mitsuda N., Matsuzaki H., Okado H., Miyake S., Vitek M. P., Yamaguchi A., Tohyama M. A pathway of neuronal apoptosis induced by hypoxia/reoxygenation: roles of nuclear factor-kappaB and Bcl-2. J Neurochem. 2000 Aug;75(2):683–693. doi: 10.1046/j.1471-4159.2000.0750683.x. [DOI] [PubMed] [Google Scholar]
  48. Tidball J. G., Spencer M. J. Calpains and muscular dystrophies. Int J Biochem Cell Biol. 2000 Jan;32(1):1–5. doi: 10.1016/s1357-2725(99)00095-3. [DOI] [PubMed] [Google Scholar]
  49. Torcia M., De Chiara G., Nencioni L., Ammendola S., Labardi D., Lucibello M., Rosini P., Marlier L. N., Bonini P., Dello Sbarba P. Nerve growth factor inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation, and cytochrome c release. J Biol Chem. 2001 Aug 8;276(42):39027–39036. doi: 10.1074/jbc.M102970200. [DOI] [PubMed] [Google Scholar]
  50. Turner N. A., Xia F., Azhar G., Zhang X., Liu L., Wei J. Y. Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol. 1998 Sep;30(9):1789–1801. doi: 10.1006/jmcc.1998.0743. [DOI] [PubMed] [Google Scholar]
  51. Wang G. W., Zhou Z., Klein J. B., Kang Y. J. Inhibition of hypoxia/reoxygenation-induced apoptosis in metallothionein-overexpressing cardiomyocytes. Am J Physiol Heart Circ Physiol. 2001 May;280(5):H2292–H2299. doi: 10.1152/ajpheart.2001.280.5.H2292. [DOI] [PubMed] [Google Scholar]
  52. Wang Y., Huang S., Sah V. P., Ross J., Jr, Brown J. H., Han J., Chien K. R. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998 Jan 23;273(4):2161–2168. doi: 10.1074/jbc.273.4.2161. [DOI] [PubMed] [Google Scholar]
  53. Webster K. A., Bishopric N. H. Molecular regulation of cardiac myocyte adaptations to chronic hypoxia. J Mol Cell Cardiol. 1992 Jul;24(7):741–751. doi: 10.1016/0022-2828(92)93388-z. [DOI] [PubMed] [Google Scholar]
  54. Webster K. A., Discher D. J., Bishopric N. H. Induction and nuclear accumulation of fos and jun proto-oncogenes in hypoxic cardiac myocytes. J Biol Chem. 1993 Aug 5;268(22):16852–16858. [PubMed] [Google Scholar]
  55. Webster K. A., Discher D. J., Kaiser S., Hernandez O., Sato B., Bishopric N. H. Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. J Clin Invest. 1999 Aug;104(3):239–252. doi: 10.1172/JCI5871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
  57. Yamamoto K., Ichijo H., Korsmeyer S. J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol. 1999 Dec;19(12):8469–8478. doi: 10.1128/mcb.19.12.8469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yamashita K., Kajstura J., Discher D. J., Wasserlauf B. J., Bishopric N. H., Anversa P., Webster K. A. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ Res. 2001 Mar 30;88(6):609–614. doi: 10.1161/01.res.88.6.609. [DOI] [PubMed] [Google Scholar]
  59. Yeh W. C., Shahinian A., Speiser D., Kraunus J., Billia F., Wakeham A., de la Pompa J. L., Ferrick D., Hum B., Iscove N. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity. 1997 Nov;7(5):715–725. doi: 10.1016/s1074-7613(00)80391-x. [DOI] [PubMed] [Google Scholar]
  60. Yin T., Sandhu G., Wolfgang C. D., Burrier A., Webb R. L., Rigel D. F., Hai T., Whelan J. Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem. 1997 Aug 8;272(32):19943–19950. doi: 10.1074/jbc.272.32.19943. [DOI] [PubMed] [Google Scholar]
  61. Yue T. L., Ma X. L., Wang X., Romanic A. M., Liu G. L., Louden C., Gu J. L., Kumar S., Poste G., Ruffolo R. R., Jr Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res. 1998 Feb 9;82(2):166–174. doi: 10.1161/01.res.82.2.166. [DOI] [PubMed] [Google Scholar]
  62. Yue T. L., Wang C., Gu J. L., Ma X. L., Kumar S., Lee J. C., Feuerstein G. Z., Thomas H., Maleeff B., Ohlstein E. H. Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res. 2000 Mar 31;86(6):692–699. doi: 10.1161/01.res.86.6.692. [DOI] [PubMed] [Google Scholar]
  63. Yujiri T., Sather S., Fanger G. R., Johnson G. L. Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science. 1998 Dec 4;282(5395):1911–1914. doi: 10.1126/science.282.5395.1911. [DOI] [PubMed] [Google Scholar]
  64. Zechner D., Craig R., Hanford D. S., McDonough P. M., Sabbadini R. A., Glembotski C. C. MKK6 activates myocardial cell NF-kappaB and inhibits apoptosis in a p38 mitogen-activated protein kinase-dependent manner. J Biol Chem. 1998 Apr 3;273(14):8232–8239. doi: 10.1074/jbc.273.14.8232. [DOI] [PubMed] [Google Scholar]
  65. Zhuang S., Demirs J. T., Kochevar I. E. p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem. 2000 Aug 25;275(34):25939–25948. doi: 10.1074/jbc.M001185200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES