Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 15;362(Pt 3):585–595. doi: 10.1042/0264-6021:3620585

Epitope-specific antibody-induced cleavage of angiotensin-converting enzyme from the cell surface.

Irina V Balyasnikova 1, Eric H Karran 1, Ronald F Albrecht 2nd 1, Sergei M Danilov 1
PMCID: PMC1222422  PMID: 11879185

Abstract

Angiotensin I-converting enzyme (ACE; CD143, EC 3.4.15.1) is a type-1 integral membrane protein that can also be released into extracellular fluids (such as plasma, and seminal and cerebrospinal fluids) as a soluble enzyme following cleavage mediated by an unidentified protease(s), referred to as ACE secretase, in a process known as "shedding". The effects of monoclonal antibodies (mAbs) to eight different epitopes on the N-terminal domain of ACE on shedding was investigated using Chinese hamster ovary cells (CHO cells) expressing an ACE transgene and using human umbilical vein endothelial cells. Antibody-induced shedding of ACE was strongly epitope-specific: most of the antibodies increased the shedding by 20-40%, mAbs 9B9 and 3A5 increased the shedding by 270 and 410% respectively, whereas binding of mAb 3G8 decreased ACE shedding by 36%. The ACE released following mAb treatment lacked a hydrophobic transmembrane domain anchor. The antibody-induced shedding was completely inhibited at 4 degrees C and by zinc chelation using 1,10-phenanthroline, suggesting involvement of a metalloprotease in this process. A hydroxamate-based metalloprotease inhibitor (batimastat, BB-94) was 15 times more efficacious in inhibiting mAb-induced ACE shedding than basal (constitutive) ACE release. Treatment of CHO-ACE cells with BB-94 more effectively prevented elevation in antibody-dependent (but not basal) ACE release induced by 3,4-dichloroisocoumarin and iodoacetamide. These data suggest that different secretases might be responsible for ACE release under basal compared with antibody-induced shedding. Further experiments with more than 40 protease inhibitors suggest that calpains, furin and the proteasome may participate in this process.

Full Text

The Full Text of this article is available as a PDF (380.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramenko T. V., Panchenko O. N., Miagkova M. A., Kost O. A., Nikol'skaia I. I., Chemodanova E. E., Agapov A. A. Opredelenie estestvennykh antitel k angiotenzinprevrashchaiushchemu frmentu v syvorotke krovi cheloveka immunofermentnym metodom. Klin Lab Diagn. 2000 Dec;(12):22–24. [PubMed] [Google Scholar]
  2. Alfalah M., Parkin E. T., Jacob R., Sturrock E. D., Mentele R., Turner A. J., Hooper N. M., Naim H. Y. A point mutation in the juxtamembrane stalk of human angiotensin I-converting enzyme invokes the action of a distinct secretase. J Biol Chem. 2001 Mar 23;276(24):21105–21109. doi: 10.1074/jbc.M100339200. [DOI] [PubMed] [Google Scholar]
  3. Allikmets EYu, Danilov S. M. Mitogen-induced disorganization of capillary-like structures formed by human large vessel endothelial cells in vitro. Tissue Cell. 1986;18(4):481–489. doi: 10.1016/0040-8166(86)90014-5. [DOI] [PubMed] [Google Scholar]
  4. Andres G., Yamaguchi N., Brett J., Caldwell P. R., Godman G., Stern D. Cellular mechanisms of adaptation of grafts to antibody. Transpl Immunol. 1996 Mar;4(1):1–17. doi: 10.1016/s0966-3274(96)80027-x. [DOI] [PubMed] [Google Scholar]
  5. Arribas J., Coodly L., Vollmer P., Kishimoto T. K., Rose-John S., Massagué J. Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J Biol Chem. 1996 May 10;271(19):11376–11382. doi: 10.1074/jbc.271.19.11376. [DOI] [PubMed] [Google Scholar]
  6. Balyasnikova I. V., Danilov S. M., Muzykantov V. R., Fisher A. B. Modulation of angiotensin-converting enzyme in cultured human vascular endothelial cells. In Vitro Cell Dev Biol Anim. 1998 Jul-Aug;34(7):545–554. doi: 10.1007/s11626-998-0114-x. [DOI] [PubMed] [Google Scholar]
  7. Bazil V. Physiological enzymatic cleavage of leukocyte membrane molecules. Immunol Today. 1995 Mar;16(3):135–140. doi: 10.1016/0167-5699(95)80130-8. [DOI] [PubMed] [Google Scholar]
  8. Beldent V., Michaud A., Wei L., Chauvet M. T., Corvol P. Proteolytic release of human angiotensin-converting enzyme. Localization of the cleavage site. J Biol Chem. 1993 Dec 15;268(35):26428–26434. [PubMed] [Google Scholar]
  9. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  10. Borrego F., Lopez-Beltran A., Peña J., Solana R. Downregulation of Fc gamma receptor IIIA alpha (CD16-II) on natural killer cells induced by anti-CD16 mAb is independent of protein tyrosine kinases and protein kinase C. Cell Immunol. 1994 Oct 1;158(1):208–217. doi: 10.1006/cimm.1994.1268. [DOI] [PubMed] [Google Scholar]
  11. Ching S. F., Hayes L. W., Slakey L. L. Angiotensin-converting enzyme in cultured endothelial cells. Synthesis, degradation, and transfer to culture medium. Arteriosclerosis. 1983 Nov-Dec;3(6):581–588. doi: 10.1161/01.atv.3.6.581. [DOI] [PubMed] [Google Scholar]
  12. Corvol P., Michaud A., Soubrier F., Williams T. A. Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J Hypertens Suppl. 1995 Sep;13(3):S3–10. doi: 10.1097/00004872-199509003-00002. [DOI] [PubMed] [Google Scholar]
  13. Danilov S., Atochina E., Hiemisch H., Churak-ova T., Moldobayeva A., Sakharov I., Deichman G., Ryan U., Muzykantov V. R. Interaction of mAb to angiotensin-converting enzyme (ACE) with antigen in vitro and in vivo: antibody targeting to the lung induces ACE antigenic modulation. Int Immunol. 1994 Aug;6(8):1153–1160. doi: 10.1093/intimm/6.8.1153. [DOI] [PubMed] [Google Scholar]
  14. Danilov S., Jaspard E., Churakova T., Towbin H., Savoie F., Wei L., Alhenc-Gelas F. Structure-function analysis of angiotensin I-converting enzyme using monoclonal antibodies. Selective inhibition of the amino-terminal active site. J Biol Chem. 1994 Oct 28;269(43):26806–26814. [PubMed] [Google Scholar]
  15. Danilov S., Savoie F., Lenoir B., Jeunemaitre X., Azizi M., Tarnow L., Alhenc-Gelas F. Development of enzyme-linked immunoassays for human angiotensin I converting enzyme suitable for large-scale studies. J Hypertens. 1996 Jun;14(6):719–727. doi: 10.1097/00004872-199606000-00007. [DOI] [PubMed] [Google Scholar]
  16. Ehlers M. R., Chen Y. N., Riordan J. F. Spontaneous solubilization of membrane-bound human testis angiotensin-converting enzyme expressed in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1009–1013. doi: 10.1073/pnas.88.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
  18. Ehlers M. R., Riordan J. F. Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry. 1991 Oct 22;30(42):10065–10074. doi: 10.1021/bi00106a001. [DOI] [PubMed] [Google Scholar]
  19. Ehlers M. R., Scholle R. R., Riordan J. F. Proteolytic release of human angiotensin-converting enzyme expressed in Chinese hamster ovary cells is enhanced by phorbol ester. Biochem Biophys Res Commun. 1995 Jan 17;206(2):541–547. doi: 10.1006/bbrc.1995.1077. [DOI] [PubMed] [Google Scholar]
  20. Eyries M., Michaud A., Deinum J., Agrapart M., Chomilier J., Kramers C., Soubrier F. Increased shedding of angiotensin-converting enzyme by a mutation identified in the stalk region. J Biol Chem. 2000 Nov 13;276(8):5525–5532. doi: 10.1074/jbc.M007706200. [DOI] [PubMed] [Google Scholar]
  21. Fenteany G., Schreiber S. L. Lactacystin, proteasome function, and cell fate. J Biol Chem. 1998 Apr 10;273(15):8545–8548. doi: 10.1074/jbc.273.15.8545. [DOI] [PubMed] [Google Scholar]
  22. Friedland J., Silverstein E. A sensitive fluorimetric assay for serum angiotensin-converting enzyme. Am J Clin Pathol. 1976 Aug;66(2):416–424. doi: 10.1093/ajcp/66.2.416. [DOI] [PubMed] [Google Scholar]
  23. Günthert A. R., Sträter J., von Reyher U., Henne C., Joos S., Koretz K., Moldenhauer G., Krammer P. H., Möller P. Early detachment of colon carcinoma cells during CD95(APO-1/Fas)-mediated apoptosis. I. De-adhesion from hyaluronate by shedding of CD44. J Cell Biol. 1996 Aug;134(4):1089–1096. doi: 10.1083/jcb.134.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Harrison D., Phillips J. H., Lanier L. L. Involvement of a metalloprotease in spontaneous and phorbol ester-induced release of natural killer cell-associated Fc gamma RIII (CD16-II). J Immunol. 1991 Nov 15;147(10):3459–3465. [PubMed] [Google Scholar]
  25. Hooper N. M., Karran E. H., Turner A. J. Membrane protein secretases. Biochem J. 1997 Jan 15;321(Pt 2):265–279. doi: 10.1042/bj3210265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hooper N. M., Keen J., Pappin D. J., Turner A. J. Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J. 1987 Oct 1;247(1):85–93. doi: 10.1042/bj2470085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hu J., Igarashi A., Kamata M., Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta ); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biol Chem. 2001 Oct 16;276(51):47863–47868. doi: 10.1074/jbc.M104068200. [DOI] [PubMed] [Google Scholar]
  28. Kost O. A., Bovin N. V., Chemodanova E. E., Nasonov V. V., Orth T. A. New feature of angiotensin-converting enzyme: carbohydrate-recognizing domain. J Mol Recognit. 2000 Nov-Dec;13(6):360–369. doi: 10.1002/1099-1352(200011/12)13:6<360::AID-JMR508>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  29. Kramers C., Danilov S. M., Deinum J., Balyasnikova I. V., Scharenborg N., Looman M., Boomsma F., de Keijzer M. H., van Duijn C., Martin S. Point mutation in the stalk of angiotensin-converting enzyme causes a dramatic increase in serum angiotensin-converting enzyme but no cardiovascular disease. Circulation. 2001 Sep 11;104(11):1236–1240. doi: 10.1161/hc3601.095932. [DOI] [PubMed] [Google Scholar]
  30. Meroni P. L., D'Cruz D., Khamashta M., Youinou P., Hughes G. R. Anti-endothelial cell antibodies: only for scientists or for clinicians too? Clin Exp Immunol. 1996 May;104(2):199–202. doi: 10.1046/j.1365-2249.1996.20707.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997 Nov 1;327(Pt 3):625–635. doi: 10.1042/bj3270625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Omura S., Fujimoto T., Otoguro K., Matsuzaki K., Moriguchi R., Tanaka H., Sasaki Y. Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. J Antibiot (Tokyo) 1991 Jan;44(1):113–116. doi: 10.7164/antibiotics.44.113. [DOI] [PubMed] [Google Scholar]
  33. Oosting J. D., Preissner K. T., Derksen R. H., de Groot P. G. Autoantibodies directed against the epidermal growth factor-like domains of thrombomodulin inhibit protein C activation in vitro. Br J Haematol. 1993 Dec;85(4):761–768. doi: 10.1111/j.1365-2141.1993.tb03220.x. [DOI] [PubMed] [Google Scholar]
  34. Oppong S. Y., Hooper N. M. Characterization of a secretase activity which releases angiotensin-converting enzyme from the membrane. Biochem J. 1993 Jun 1;292(Pt 2):597–603. doi: 10.1042/bj2920597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pandiella A., Massagué J. Multiple signals activate cleavage of the membrane transforming growth factor-alpha precursor. J Biol Chem. 1991 Mar 25;266(9):5769–5773. [PubMed] [Google Scholar]
  36. Parvathy S., Karran E. H., Turner A. J., Hooper N. M. The secretases that cleave angiotensin converting enzyme and the amyloid precursor protein are distinct from tumour necrosis factor-alpha convertase. FEBS Lett. 1998 Jul 10;431(1):63–65. doi: 10.1016/s0014-5793(98)00726-1. [DOI] [PubMed] [Google Scholar]
  37. Parvathy S., Oppong S. Y., Karran E. H., Buckle D. R., Turner A. J., Hooper N. M. Angiotensin-converting enzyme secretase is inhibited by zinc metalloprotease inhibitors and requires its substrate to be inserted in a lipid bilayer. Biochem J. 1997 Oct 1;327(Pt 1):37–43. doi: 10.1042/bj3270037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ramchandran R., Kasturi S., Douglas J. G., Sen I. Metalloprotease-mediated cleavage secretion of pulmonary ACE by vascular endothelial and kidney epithelial cells. Am J Physiol. 1996 Aug;271(2 Pt 2):H744–H751. doi: 10.1152/ajpheart.1996.271.2.H744. [DOI] [PubMed] [Google Scholar]
  39. Ramchandran R., Sen G. C., Misono K., Sen I. Regulated cleavage-secretion of the membrane-bound angiotensin-converting enzyme. J Biol Chem. 1994 Jan 21;269(3):2125–2130. [PubMed] [Google Scholar]
  40. Roberts S. B., Ripellino J. A., Ingalls K. M., Robakis N. K., Felsenstein K. M. Non-amyloidogenic cleavage of the beta-amyloid precursor protein by an integral membrane metalloendopeptidase. J Biol Chem. 1994 Jan 28;269(4):3111–3116. [PubMed] [Google Scholar]
  41. Sadhukhan R., Santhamma K. R., Reddy P., Peschon J. J., Black R. A., Sen I. Unaltered cleavage and secretion of angiotensin-converting enzyme in tumor necrosis factor-alpha-converting enzyme-deficient mice. J Biol Chem. 1999 Apr 9;274(15):10511–10516. doi: 10.1074/jbc.274.15.10511. [DOI] [PubMed] [Google Scholar]
  42. Sadhukhan R., Sen G. C., Ramchandran R., Sen I. The distal ectodomain of angiotensin-converting enzyme regulates its cleavage-secretion from the cell surface. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):138–143. doi: 10.1073/pnas.95.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Santhamma K. R., Sen I. Specific cellular proteins associate with angiotensin-converting enzyme and regulate its intracellular transport and cleavage-secretion. J Biol Chem. 2000 Jul 28;275(30):23253–23258. doi: 10.1074/jbc.M000593200. [DOI] [PubMed] [Google Scholar]
  44. Schwager S. L., Chubb A. J., Scholle R. R., Brandt W. F., Mentele R., Riordan J. F., Sturrock E. D., Ehlers M. R. Modulation of juxtamembrane cleavage ("shedding") of angiotensin-converting enzyme by stalk glycosylation: evidence for an alternative shedding protease. Biochemistry. 1999 Aug 10;38(32):10388–10397. doi: 10.1021/bi990357j. [DOI] [PubMed] [Google Scholar]
  45. Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Staessen J. A., Wang J. G., Ginocchio G., Petrov V., Saavedra A. P., Soubrier F., Vlietinck R., Fagard R. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens. 1997 Dec;15(12 Pt 2):1579–1592. doi: 10.1097/00004872-199715120-00059. [DOI] [PubMed] [Google Scholar]
  47. Wei L., Alhenc-Gelas F., Soubrier F., Michaud A., Corvol P., Clauser E. Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem. 1991 Mar 25;266(9):5540–5546. [PubMed] [Google Scholar]
  48. Woodman Z. L., Oppong S. Y., Cook S., Hooper N. M., Schwager S. L., Brandt W. F., Ehlers M. R., Sturrock E. D. Shedding of somatic angiotensin-converting enzyme (ACE) is inefficient compared with testis ACE despite cleavage at identical stalk sites. Biochem J. 2000 May 1;347(Pt 3):711–718. [PMC free article] [PubMed] [Google Scholar]
  49. Yuzawa Y., Brentjens J. R., Brett J., Caldwell P. R., Esposito C., Fukatsu A., Godman G., Stern D., Andres G. Antibody-mediated redistribution and shedding of endothelial antigens in the rabbit. J Immunol. 1993 Jun 15;150(12):5633–5646. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES