Abstract
Atheromatous plaques contain various cell types, including macrophages, endothelial cells and smooth-muscle cells. To investigate the possible interactions between secreted matrix metalloproteinases and high-density lipoprotein (HDL) components, we tested the above cell types by culturing them for 24 h. HDL(3) (HDL subfractions with average sizes of between 8.44 nm for HDL(3A) and 7.62 nm for HDL(3C)) were then incubated in their cell-free conditioned media. Proteolytic degradation of apolipoprotein A-I was observed with macrophages, but not with endothelial-cell- or muscle-cell-conditioned supernatant. Absence of calcium or addition of EDTA to incubation media prevented all proteolytic processes. The identified apolipoprotein A-I fragments had sizes of 26, 22, 14 and 9 kDa. Two-dimensional electrophoresis and MS resolved the 26 and the 22 kDa components and identified peptides resulting from both N- and C-terminal cleavage of apolipoprotein A-I. The higher abundance of C- than N-terminally cleaved peptides agrees with data in the literature for a fully structured alpha-helix around Tyr(18) compared with an unstructured region around Gly(185) and Gly(186). The flexibility in the latter region of apolipoprotein A-I may explain its susceptibility to proteolysis. In our experimental set-up, HDL(3C) was more extensively degraded than the other HDL(3) subclasses (HDL(3A) and HDL(3B)). Proteolytic fragments produced by metalloproteinase action were shown by gel filtration and electrophoresis to be neither associated with lipids nor self-associated.
Full Text
The Full Text of this article is available as a PDF (345.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borhani D. W., Engler J. A., Brouillette C. G. Crystallization of truncated human apolipoprotein A-I in a novel conformation. Acta Crystallogr D Biol Crystallogr. 1999 Sep;55(Pt 9):1578–1583. doi: 10.1107/s0907444999008914. [DOI] [PubMed] [Google Scholar]
- Borhani D. W., Rogers D. P., Engler J. A., Brouillette C. G. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12291–12296. doi: 10.1073/pnas.94.23.12291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brouillette C. G., Anantharamaiah G. M., Engler J. A., Borhani D. W. Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim Biophys Acta. 2001 Mar 30;1531(1-2):4–46. doi: 10.1016/s1388-1981(01)00081-6. [DOI] [PubMed] [Google Scholar]
- Calabresi L., Tedeschi G., Treu C., Ronchi S., Galbiati D., Airoldi S., Sirtori C. R., Marcel Y., Franceschini G. Limited proteolysis of a disulfide-linked apoA-I dimer in reconstituted HDL. J Lipid Res. 2001 Jun;42(6):935–942. [PubMed] [Google Scholar]
- Castro G. R., Fielding C. J. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry. 1988 Jan 12;27(1):25–29. doi: 10.1021/bi00401a005. [DOI] [PubMed] [Google Scholar]
- Celentano D. C., Frishman W. H. Matrix metalloproteinases and coronary artery disease: a novel therapeutic target. J Clin Pharmacol. 1997 Nov;37(11):991–1000. doi: 10.1002/j.1552-4604.1997.tb04278.x. [DOI] [PubMed] [Google Scholar]
- Dalton M. B., Swaney J. B. Structural and functional domains of apolipoprotein A-I within high density lipoproteins. J Biol Chem. 1993 Sep 15;268(26):19274–19283. [PubMed] [Google Scholar]
- Davenport A. P., Kuc R. E., Mockridge J. W. Endothelin-converting enzyme in the human vasculature: evidence for differential conversion of big endothelin-3 by endothelial and smooth-muscle cells. J Cardiovasc Pharmacol. 1998;31 (Suppl 1):S1–S3. doi: 10.1097/00005344-199800001-00002. [DOI] [PubMed] [Google Scholar]
- Dollery C. M., McEwan J. R., Henney A. M. Matrix metalloproteinases and cardiovascular disease. Circ Res. 1995 Nov;77(5):863–868. doi: 10.1161/01.res.77.5.863. [DOI] [PubMed] [Google Scholar]
- Galis Z. S., Muszynski M., Sukhova G. K., Simon-Morrissey E., Libby P. Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann N Y Acad Sci. 1995 Jan 17;748:501–507. doi: 10.1111/j.1749-6632.1994.tb17348.x. [DOI] [PubMed] [Google Scholar]
- Ghiselli G., Rohde M. F., Tanenbaum S., Krishnan S., Gotto A. M., Jr Origin of apolipoprotein A-I polymorphism in plasma. J Biol Chem. 1985 Dec 15;260(29):15662–15668. [PubMed] [Google Scholar]
- Goetze S., Xi X. P., Kawano Y., Kawano H., Fleck E., Hsueh W. A., Law R. E. TNF-alpha-induced migration of vascular smooth muscle cells is MAPK dependent. Hypertension. 1999 Jan;33(1 Pt 2):183–189. doi: 10.1161/01.hyp.33.1.183. [DOI] [PubMed] [Google Scholar]
- Janusz M. J., Hare M., Durham S. L., Potempa J., McGraw W., Pike R., Travis J., Shapiro S. D. Cartilage proteoglycan degradation by a mouse transformed macrophage cell line is mediated by macrophage metalloelastase. Inflamm Res. 1999 May;48(5):280–288. doi: 10.1007/s000110050460. [DOI] [PubMed] [Google Scholar]
- Jenö P., Mini T., Moes S., Hintermann E., Horst M. Internal sequences from proteins digested in polyacrylamide gels. Anal Biochem. 1995 Jan 1;224(1):75–82. doi: 10.1006/abio.1995.1010. [DOI] [PubMed] [Google Scholar]
- Ji Y., Jonas A. Properties of an N-terminal proteolytic fragment of apolipoprotein AI in solution and in reconstituted high density lipoproteins. J Biol Chem. 1995 May 12;270(19):11290–11297. doi: 10.1074/jbc.270.19.11290. [DOI] [PubMed] [Google Scholar]
- Kunitake S. T., Chen G. C., Kung S. F., Schilling J. W., Hardman D. A., Kane J. P. Pre-beta high density lipoprotein. Unique disposition of apolipoprotein A-I increases susceptibility to proteolysis. Arteriosclerosis. 1990 Jan-Feb;10(1):25–30. doi: 10.1161/01.atv.10.1.25. [DOI] [PubMed] [Google Scholar]
- Laccotripe M., Makrides S. C., Jonas A., Zannis V. I. The carboxyl-terminal hydrophobic residues of apolipoprotein A-I affect its rate of phospholipid binding and its association with high density lipoprotein. J Biol Chem. 1997 Jul 11;272(28):17511–17522. doi: 10.1074/jbc.272.28.17511. [DOI] [PubMed] [Google Scholar]
- Lee E., Grodzinsky A. J., Libby P., Clinton S. K., Lark M. W., Lee R. T. Human vascular smooth muscle cell-monocyte interactions and metalloproteinase secretion in culture. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2284–2289. doi: 10.1161/01.atv.15.12.2284. [DOI] [PubMed] [Google Scholar]
- Libby P., Schoenbeck U., Mach F., Selwyn A. P., Ganz P. Current concepts in cardiovascular pathology: the role of LDL cholesterol in plaque rupture and stabilization. Am J Med. 1998 Feb 23;104(2A):14S–18S. doi: 10.1016/s0002-9343(98)00041-2. [DOI] [PubMed] [Google Scholar]
- Lindstedt L., Saarinen J., Kalkkinen N., Welgus H., Kovanen P. T. Matrix metalloproteinases-3, -7, and -12, but not -9, reduce high density lipoprotein-induced cholesterol efflux from human macrophage foam cells by truncation of the carboxyl terminus of apolipoprotein A-I. Parallel losses of pre-beta particles and the high affinity component of efflux. J Biol Chem. 1999 Aug 6;274(32):22627–22634. doi: 10.1074/jbc.274.32.22627. [DOI] [PubMed] [Google Scholar]
- Lins L., Piron S., Conrath K., Vanloo B., Brasseur R., Rosseneu M., Baert J., Ruysschaert J. M. Enzymatic hydrolysis of reconstituted dimyristoylphosphatidylcholine-apo A-I complexes. Biochim Biophys Acta. 1993 Sep 19;1151(2):137–142. doi: 10.1016/0005-2736(93)90096-i. [DOI] [PubMed] [Google Scholar]
- Okon M., Frank P. G., Marcel Y. L., Cushley R. J. Secondary structure of human apolipoprotein A-I(1-186) in lipid-mimetic solution. FEBS Lett. 2001 Jan 5;487(3):390–396. doi: 10.1016/s0014-5793(00)02375-9. [DOI] [PubMed] [Google Scholar]
- Pasterkamp G., Schoneveld A. H., Hijnen D. J., de Kleijn D. P., Teepen H., van der Wal A. C., Borst C. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery. Atherosclerosis. 2000 Jun;150(2):245–253. doi: 10.1016/s0021-9150(99)00371-8. [DOI] [PubMed] [Google Scholar]
- Phillips J. C., Wriggers W., Li Z., Jonas A., Schulten K. Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys J. 1997 Nov;73(5):2337–2346. doi: 10.1016/S0006-3495(97)78264-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts L. M., Ray M. J., Shih T. W., Hayden E., Reader M. M., Brouillette C. G. Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and -oxidized lipid-free and lipid-bound human apo A-I. Biochemistry. 1997 Jun 17;36(24):7615–7624. doi: 10.1021/bi962952g. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
- Schumaker V. N., Puppione D. L. Sequential flotation ultracentrifugation. Methods Enzymol. 1986;128:155–170. doi: 10.1016/0076-6879(86)28066-0. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Segrest J. P., Jackson R. L., Morrisett J. D., Gotto A. M., Jr A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett. 1974 Jan 15;38(3):247–258. doi: 10.1016/0014-5793(74)80064-5. [DOI] [PubMed] [Google Scholar]
- Segrest J. P., Jones M. K., Klon A. E., Sheldahl C. J., Hellinger M., De Loof H., Harvey S. C. A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J Biol Chem. 1999 Nov 5;274(45):31755–31758. doi: 10.1074/jbc.274.45.31755. [DOI] [PubMed] [Google Scholar]
- Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
- Sviridov D., Pyle L. E., Fidge N. Efflux of cellular cholesterol and phospholipid to apolipoprotein A-I mutants. J Biol Chem. 1996 Dec 27;271(52):33277–33283. doi: 10.1074/jbc.271.52.33277. [DOI] [PubMed] [Google Scholar]
- Takayama M., Itoh S., Nagasaki T., Tanimizu I. A new enzymatic method for determination of serum choline-containing phospholipids. Clin Chim Acta. 1977 Aug 15;79(1):93–98. doi: 10.1016/0009-8981(77)90465-x. [DOI] [PubMed] [Google Scholar]
- Tricerri M. A., Behling Agree A. K., Sanchez S. A., Bronski J., Jonas A. Arrangement of apolipoprotein A-I in reconstituted high-density lipoprotein disks: an alternative model based on fluorescence resonance energy transfer experiments. Biochemistry. 2001 Apr 24;40(16):5065–5074. doi: 10.1021/bi002815q. [DOI] [PubMed] [Google Scholar]
- Vaalamo M., Kariniemi A. L., Shapiro S. D., Saarialho-Kere U. Enhanced expression of human metalloelastase (MMP-12) in cutaneous granulomas and macrophage migration. J Invest Dermatol. 1999 Apr;112(4):499–505. doi: 10.1046/j.1523-1747.1999.00547.x. [DOI] [PubMed] [Google Scholar]
- Wang G., Sparrow J. T., Cushley R. J. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy. Biochemistry. 1997 Nov 4;36(44):13657–13666. doi: 10.1021/bi971151q. [DOI] [PubMed] [Google Scholar]
- Wang H., Keiser J. A. Expression of membrane-type matrix metalloproteinase in rabbit neointimal tissue and its correlation with matrix-metalloproteinase-2 activation. J Vasc Res. 1998 Jan-Feb;35(1):45–54. doi: 10.1159/000025564. [DOI] [PubMed] [Google Scholar]
- Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]
- Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature. 1996 Feb 1;379(6564):466–469. doi: 10.1038/379466a0. [DOI] [PubMed] [Google Scholar]
- Xie B., Dong Z., Fidler I. J. Regulatory mechanisms for the expression of type IV collagenases/gelatinases in murine macrophages. J Immunol. 1994 Apr 1;152(7):3637–3644. [PubMed] [Google Scholar]
- Yancey P. G., Bielicki J. K., Johnson W. J., Lund-Katz S., Palgunachari M. N., Anantharamaiah G. M., Segrest J. P., Phillips M. C., Rothblat G. H. Efflux of cellular cholesterol and phospholipid to lipid-free apolipoproteins and class A amphipathic peptides. Biochemistry. 1995 Jun 20;34(24):7955–7965. doi: 10.1021/bi00024a021. [DOI] [PubMed] [Google Scholar]