Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 15;362(Pt 3):675–684. doi: 10.1042/0264-6021:3620675

A novel function for the 90 kDa heat-shock protein (Hsp90): facilitating nuclear export of 60 S ribosomal subunits.

Harald Schlatter 1, Thomas Langer 1, Susann Rosmus 1, Marie-Luise Onneken 1, Hugo Fasold 1
PMCID: PMC1222432  PMID: 11879195

Abstract

Ribosomal subunits are assembled in the nucleus, and mature 40 S and 60 S subunits are exported stoichiometrically into the cytoplasm. The nuclear export of ribosomal subunits is a unidirectional, saturable and energy-dependent process. An in vitro assay for the nuclear export of 60 S ribosomal subunits involves the use of resealed nuclear envelopes. The export of ribosomal subunits from resealed nuclear envelopes is enhanced by cytoplasmic proteins. Here we present evidence that the export-promoting activity was due to the cytoplasmic 90 kDa heat-shock protein (Hsp90). Isolated, purified Hsp90 vastly enhanced the export of 60 S ribosomal subunits from resealed nuclear envelopes, while inhibition of Hsp90 function, either with the Hsp90-binding drug geldanamycin or with anti-Hsp90 antibodies, resulted in reduced release of 60 S ribosomal subunits. To confirm these findings under in vivo conditions, corresponding experiments were performed with Xenopus oocytes using microinjection techniques; the results obtained confirmed the findings obtained with resealed nuclear envelopes. These findings suggest that Hsp90 facilitates the nuclear export of 60 S ribosomal subunits, probably by chaperoning protein interactions during the export process.

Full Text

The Full Text of this article is available as a PDF (256.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam S. A., Marr R. S., Gerace L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol. 1990 Sep;111(3):807–816. doi: 10.1083/jcb.111.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbieri M., Vittone A., Maraldi N. M. Cell stress and ribosome crystallization. J Submicrosc Cytol Pathol. 1995 Apr;27(2):199–207. [PubMed] [Google Scholar]
  3. Bataillé N., Helser T., Fried H. M. Cytoplasmic transport of ribosomal subunits microinjected into the Xenopus laevis oocyte nucleus: a generalized, facilitated process. J Cell Biol. 1990 Oct;111(4):1571–1582. doi: 10.1083/jcb.111.4.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blobel G., Potter V. R. Nuclei from rat liver: isolation method that combines purity with high yield. Science. 1966 Dec 30;154(3757):1662–1665. doi: 10.1126/science.154.3757.1662. [DOI] [PubMed] [Google Scholar]
  5. Boulik M., Hellmann W. Comparison of Artemia salina and Escherichia coli ribosome structure by electron microscopy. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2829–2833. doi: 10.1073/pnas.75.6.2829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carbajal M. E., Valet J. P., Charest P. M., Tanguay R. M. Purification of Drosophila hsp 83 and immunoelectron microscopic localization. Eur J Cell Biol. 1990 Jun;52(1):147–156. [PubMed] [Google Scholar]
  7. Fahrenkrog B., Stoffler D., Aebi U. Nuclear pore complex architecture and functional dynamics. Curr Top Microbiol Immunol. 2001;259:95–117. doi: 10.1007/978-3-642-56597-7_5. [DOI] [PubMed] [Google Scholar]
  8. Gadal O., Strauss D., Kessl J., Trumpower B., Tollervey D., Hurt E. Nuclear export of 60s ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol Cell Biol. 2001 May;21(10):3405–3415. doi: 10.1128/MCB.21.10.3405-3415.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Görlich D., Kostka S., Kraft R., Dingwall C., Laskey R. A., Hartmann E., Prehn S. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol. 1995 Apr 1;5(4):383–392. doi: 10.1016/s0960-9822(95)00079-0. [DOI] [PubMed] [Google Scholar]
  10. Görlich D., Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol. 1999;15:607–660. doi: 10.1146/annurev.cellbio.15.1.607. [DOI] [PubMed] [Google Scholar]
  11. Görlich D., Prehn S., Laskey R. A., Hartmann E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell. 1994 Dec 2;79(5):767–778. doi: 10.1016/0092-8674(94)90067-1. [DOI] [PubMed] [Google Scholar]
  12. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  13. Hanausek-Walaszek M. E., French B. T., Schumm D. E., Walaszek Z., Webb T. E. Endogenous and exogenous factors affecting ribosomal RNA release from rat liver nuclei in a cell-free system. Can J Biochem Cell Biol. 1984 Jun;62(6):335–340. doi: 10.1139/o84-047. [DOI] [PubMed] [Google Scholar]
  14. Hassel I., Cézanne V., Treviño C., Schlatter H., Romero-Matuschek I., Schmidt A., Fasold H. Export of ribosomal subunits from resealed rat liver nuclear envelopes. Eur J Biochem. 1996 Oct 1;241(1):32–37. doi: 10.1111/j.1432-1033.1996.0032t.x. [DOI] [PubMed] [Google Scholar]
  15. Hesketh J. E. Sorting of messenger RNAs in the cytoplasm: mRNA localization and the cytoskeleton. Exp Cell Res. 1996 Jun 15;225(2):219–236. doi: 10.1006/excr.1996.0172. [DOI] [PubMed] [Google Scholar]
  16. Ho J. H., Kallstrom G., Johnson A. W. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol. 2000 Nov 27;151(5):1057–1066. doi: 10.1083/jcb.151.5.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hurt E., Hannus S., Schmelzl B., Lau D., Tollervey D., Simos G. A novel in vivo assay reveals inhibition of ribosomal nuclear export in ran-cycle and nucleoporin mutants. J Cell Biol. 1999 Feb 8;144(3):389–401. doi: 10.1083/jcb.144.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ju Q., Warner J. R. Ribosome synthesis during the growth cycle of Saccharomyces cerevisiae. Yeast. 1994 Feb;10(2):151–157. doi: 10.1002/yea.320100203. [DOI] [PubMed] [Google Scholar]
  19. Keminer O., Peters R. Permeability of single nuclear pores. Biophys J. 1999 Jul;77(1):217–228. doi: 10.1016/S0006-3495(99)76883-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Khanna-Gupta A., Ware V. C. Nucleocytoplasmic transport of ribosomes in a eukaryotic system: is there a facilitated transport process? Proc Natl Acad Sci U S A. 1989 Mar;86(6):1791–1795. doi: 10.1073/pnas.86.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kiseleva E., Goldberg M. W., Daneholt B., Allen T. D. RNP export is mediated by structural reorganization of the nuclear pore basket. J Mol Biol. 1996 Jul 19;260(3):304–311. doi: 10.1006/jmbi.1996.0401. [DOI] [PubMed] [Google Scholar]
  22. Kressler D., Linder P., de La Cruz J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Dec;19(12):7897–7912. doi: 10.1128/mcb.19.12.7897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kutay U., Izaurralde E., Bischoff F. R., Mattaj I. W., Görlich D. Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J. 1997 Mar 17;16(6):1153–1163. doi: 10.1093/emboj/16.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Langer T., Fasold H. Isolation and quantification of the heat shock protein 90 alpha and beta isoforms from rat liver. Protoplasma. 2001;218(1-2):54–56. doi: 10.1007/BF01288360. [DOI] [PubMed] [Google Scholar]
  26. Langer T. Nuclear transport of histone 2b in mammalian cells is signal- and energy-dependent and different from the importin alpha/beta-mediated process. Histochem Cell Biol. 2000 Jun;113(6):455–465. doi: 10.1007/s004180000147. [DOI] [PubMed] [Google Scholar]
  27. Liang P., MacRae T. H. Molecular chaperones and the cytoskeleton. J Cell Sci. 1997 Jul;110(Pt 13):1431–1440. doi: 10.1242/jcs.110.13.1431. [DOI] [PubMed] [Google Scholar]
  28. Maul G. G. The nuclear and the cytoplasmic pore complex: structure, dynamics, distribution, and evolution. Int Rev Cytol Suppl. 1977;(6):75–186. [PubMed] [Google Scholar]
  29. Minami M., Nakamura M., Emori Y., Minami Y. Both the N- and C-terminal chaperone sites of Hsp90 participate in protein refolding. Eur J Biochem. 2001 Apr;268(8):2520–2524. doi: 10.1046/j.1432-1327.2001.02145.x. [DOI] [PubMed] [Google Scholar]
  30. Moore M. S., Blobel G. The two steps of nuclear import, targeting to the nuclear envelope and translocation through the nuclear pore, require different cytosolic factors. Cell. 1992 Jun 12;69(6):939–950. doi: 10.1016/0092-8674(92)90613-h. [DOI] [PubMed] [Google Scholar]
  31. Moy T. I., Silver P. A. Nuclear export of the small ribosomal subunit requires the ran-GTPase cycle and certain nucleoporins. Genes Dev. 1999 Aug 15;13(16):2118–2133. doi: 10.1101/gad.13.16.2118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nemoto T., Ohara-Nemoto Y., Ota M., Takagi T., Yokoyama K. Mechanism of dimer formation of the 90-kDa heat-shock protein. Eur J Biochem. 1995 Oct 1;233(1):1–8. doi: 10.1111/j.1432-1033.1995.001_1.x. [DOI] [PubMed] [Google Scholar]
  33. Palmiter R. D. Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undergraded polysomes and messenger ribonucleic acid. Biochemistry. 1974 Aug 13;13(17):3606–3615. doi: 10.1021/bi00714a032. [DOI] [PubMed] [Google Scholar]
  34. Pennica D., King K. L., Shaw K. J., Luis E., Rullamas J., Luoh S. M., Darbonne W. C., Knutzon D. S., Yen R., Chien K. R. Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1142–1146. doi: 10.1073/pnas.92.4.1142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Perez-Terzic C., Gacy A. M., Bortolon R., Dzeja P. P., Puceat M., Jaconi M., Prendergast F. G., Terzic A. Directed inhibition of nuclear import in cellular hypertrophy. J Biol Chem. 2001 Mar 30;276(23):20566–20571. doi: 10.1074/jbc.M101950200. [DOI] [PubMed] [Google Scholar]
  36. Pokrywka N. J., Goldfarb D. S. Nuclear export pathways of tRNA and 40 S ribosomes include both common and specific intermediates. J Biol Chem. 1995 Feb 24;270(8):3619–3624. doi: 10.1074/jbc.270.8.3619. [DOI] [PubMed] [Google Scholar]
  37. Pratt W. B. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem. 1993 Oct 15;268(29):21455–21458. [PubMed] [Google Scholar]
  38. Reynolds C. R., Tedeschi H. Permeability properties of mammalian cell nuclei in living cells and in vitro. J Cell Sci. 1984 Aug;70:197–207. doi: 10.1242/jcs.70.1.197. [DOI] [PubMed] [Google Scholar]
  39. Ribbeck K., Görlich D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 2001 Mar 15;20(6):1320–1330. doi: 10.1093/emboj/20.6.1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ribbeck K., Kutay U., Paraskeva E., Görlich D. The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol. 1999 Jan 14;9(1):47–50. doi: 10.1016/s0960-9822(99)80046-3. [DOI] [PubMed] [Google Scholar]
  41. Richter K., Buchner J. Hsp90: chaperoning signal transduction. J Cell Physiol. 2001 Sep;188(3):281–290. doi: 10.1002/jcp.1131. [DOI] [PubMed] [Google Scholar]
  42. Riedel N., Bachmann M., Prochnow D., Richter H. P., Fasold H. Permeability measurements with closed vesicles from rat liver nuclear envelopes. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3540–3544. doi: 10.1073/pnas.84.11.3540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Riedel N., Fasold H. Nuclear-envelope vesicles as a model system to study nucleocytoplasmic transport. Specific uptake of nuclear proteins. Biochem J. 1987 Jan 1;241(1):213–219. doi: 10.1042/bj2410213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Riedel N., Fasold H. Preparation and characterization of nuclear-envelope vesicles from rat liver nuclei. Biochem J. 1987 Jan 1;241(1):203–212. doi: 10.1042/bj2410203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Roe S. M., Prodromou C., O'Brien R., Ladbury J. E., Piper P. W., Pearl L. H. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem. 1999 Jan 28;42(2):260–266. doi: 10.1021/jm980403y. [DOI] [PubMed] [Google Scholar]
  46. Stephanou A., Brar B., Heads R., Knight R. D., Marber M. S., Pennica D., Latchman D. S. Cardiotrophin-1 induces heat shock protein accumulation in cultured cardiac cells and protects them from stressful stimuli. J Mol Cell Cardiol. 1998 Apr;30(4):849–855. doi: 10.1006/jmcc.1998.0651. [DOI] [PubMed] [Google Scholar]
  47. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999 Jan;79(1):215–262. doi: 10.1152/physrev.1999.79.1.215. [DOI] [PubMed] [Google Scholar]
  48. Warner J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999 Nov;24(11):437–440. doi: 10.1016/s0968-0004(99)01460-7. [DOI] [PubMed] [Google Scholar]
  49. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  50. Wiech H., Buchner J., Zimmermann R., Jakob U. Hsp90 chaperones protein folding in vitro. Nature. 1992 Jul 9;358(6382):169–170. doi: 10.1038/358169a0. [DOI] [PubMed] [Google Scholar]
  51. Winey M., Yarar D., Giddings T. H., Jr, Mastronarde D. N. Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. Mol Biol Cell. 1997 Nov;8(11):2119–2132. doi: 10.1091/mbc.8.11.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wool I. G. The structure and function of eukaryotic ribosomes. Annu Rev Biochem. 1979;48:719–754. doi: 10.1146/annurev.bi.48.070179.003443. [DOI] [PubMed] [Google Scholar]
  53. Wunderlich F., Giese G., Falk H. In vitro nuclear transport of ribosomal ribonucleoprotein: temperature affects quantity but not quality of exported particles. Mol Cell Biol. 1983 Apr;3(4):693–698. doi: 10.1128/mcb.3.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yu L. C., Racevskis J., Webb T. E. Regulated transport of ribosomal subunits from regenerating rat liver nuclei in a cell-free system. Cancer Res. 1972 Nov;32(11):2314–2321. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES