Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 15;362(Pt 3):755–760. doi: 10.1042/0264-6021:3620755

Complete beta-oxidation of valproate: cleavage of 3-oxovalproyl-CoA by a mitochondrial 3-oxoacyl-CoA thiolase.

Margarida F B Silva 1, Jos P N Ruiter 1, Henk Overmars 1, Albert H Bootsma 1, Albert H van Gennip 1, Cornelis Jakobs 1, Marinus Duran 1, Isabel Tavares de Almeida 1, Ronald J A Wanders 1
PMCID: PMC1222442  PMID: 11879205

Abstract

The beta-oxidation of valproic acid (VPA; 2-n-propylpentanoic acid) was investigated in vitro in intact rat liver mitochondria incubated with (3)H-labelled VPA. The metabolism of [4,5-(3)H(2)]VPA and [2-(3)H]VPA was studied by analysing the different acyl-CoA intermediates formed by reverse-phase HPLC with radiochemical detection. Valproyl-CoA, Delta(2(E))-valproyl-CoA,3-hydroxyvalproyl-CoA and 3-oxovalproyl-CoA (labelled and non-labelled) were determined using continuous on-line radiochemical and UV detection. The formation of these intermediates was investigated using the two tritiated precursors in respiratory states 3 and 4. Valproyl-CoA was present at highest concentrations under both conditions. Two distinct labelled peaks were found, which were identified as (3)H(2)O and [4,5-(3)H(2)]3-oxo-VPA. The formation of (3)H(2)O strongly suggested that VPA underwent complete beta-oxidation and that [4,5-(3)H(2)]3-oxo-VPA was formed by hydrolysis of the corresponding thioester. The hypothesis that 3-oxovalproyl-CoA undergoes thiolytic cleavage was investigated further. For this purpose a mito chondrial lysate was incubated with synthetic 3-oxovalproyl-CoA, carnitine and carnitine acetyltransferase for subsequent monitoring of the formation of propionylcarnitine and pentanoylcarnitine using electrospray ionization tandem MS. The detection of these compounds demonstrated unequivocally that the intermediate 3-oxovalproyl-CoA is a substrate of a mitochondrial thiolase, producing propionyl-CoA and pentanoyl-CoA, thus demonstrating the complete beta-oxidation of VPA in the mitochondrion. Our data should lead to a re-evaluation of the generally accepted concept that the biotransformation of VPA by mitochondrial beta-oxidation is incomplete.

Full Text

The Full Text of this article is available as a PDF (138.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battino D., Estienne M., Avanzini G. Clinical pharmacokinetics of antiepileptic drugs in paediatric patients. Part I: Phenobarbital, primidone, valproic acid, ethosuximide and mesuximide. Clin Pharmacokinet. 1995 Oct;29(4):257–286. doi: 10.2165/00003088-199529040-00005. [DOI] [PubMed] [Google Scholar]
  2. Becker C. M., Harris R. A. Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Arch Biochem Biophys. 1983 Jun;223(2):381–392. doi: 10.1016/0003-9861(83)90602-1. [DOI] [PubMed] [Google Scholar]
  3. Bjorge S. M., Baillie T. A. Studies on the beta-oxidation of valproic acid in rat liver mitochondrial preparations. Drug Metab Dispos. 1991 Jul-Aug;19(4):823–829. [PubMed] [Google Scholar]
  4. Coudé F. X., Grimber G., Pelet A., Benoit Y. Action of the antiepileptic drug, valproic acid, on fatty acid oxidation in isolated rat hepatocytes. Biochem Biophys Res Commun. 1983 Sep 15;115(2):730–736. doi: 10.1016/s0006-291x(83)80205-8. [DOI] [PubMed] [Google Scholar]
  5. Ito M., Ikeda Y., Arnez J. G., Finocchiaro G., Tanaka K. The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase. Biochim Biophys Acta. 1990 May 16;1034(2):213–218. doi: 10.1016/0304-4165(90)90079-c. [DOI] [PubMed] [Google Scholar]
  6. Kamijo T., Indo Y., Souri M., Aoyama T., Hara T., Yamamoto S., Ushikubo S., Rinaldo P., Matsuda I., Komiyama A. Medium chain 3-ketoacyl-coenzyme A thiolase deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Pediatr Res. 1997 Nov;42(5):569–576. doi: 10.1203/00006450-199711000-00002. [DOI] [PubMed] [Google Scholar]
  7. Katayama H., Watanabe M., Yoshitomi H., Yoshida H., Kimoto H., Kamiya A., Hayashi T., Akimura T. Urinary metabolites of valproic acid in epileptic patients. Biol Pharm Bull. 1998 Mar;21(3):304–307. doi: 10.1248/bpb.21.304. [DOI] [PubMed] [Google Scholar]
  8. Kesterson J. W., Granneman G. R., Machinist J. M. The hepatotoxicity of valproic acid and its metabolites in rats. I. Toxicologic, biochemical and histopathologic studies. Hepatology. 1984 Nov-Dec;4(6):1143–1152. doi: 10.1002/hep.1840040609. [DOI] [PubMed] [Google Scholar]
  9. Li J., Norwood D. L., Mao L. F., Schulz H. Mitochondrial metabolism of valproic acid. Biochemistry. 1991 Jan 15;30(2):388–394. doi: 10.1021/bi00216a012. [DOI] [PubMed] [Google Scholar]
  10. Matsumoto I., Kuhara T., Yoshino M. Metabolism of branched medium chain length fatty acid. II--beta-oxidation of sodium dipropylacetate in rats. Biomed Mass Spectrom. 1976 Oct;3(5):235–240. doi: 10.1002/bms.1200030509. [DOI] [PubMed] [Google Scholar]
  11. Ponchaut S., van Hoof F., Veitch K. In vitro effects of valproate and valproate metabolites on mitochondrial oxidations. Relevance of CoA sequestration to the observed inhibitions. Biochem Pharmacol. 1992 Jun 9;43(11):2435–2442. doi: 10.1016/0006-2952(92)90324-c. [DOI] [PubMed] [Google Scholar]
  12. Rasmussen J. T., Börchers T., Knudsen J. Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters. Biochem J. 1990 Feb 1;265(3):849–855. doi: 10.1042/bj2650849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robinson B. H., Sherwood W. G., Taylor J., Balfe J. W., Mamer O. A. Acetoacetyl CoA thiolase deficiency: a cause of severe ketoacidosis in infancy simulating salicylism. J Pediatr. 1979 Aug;95(2):228–233. doi: 10.1016/s0022-3476(79)80656-3. [DOI] [PubMed] [Google Scholar]
  14. Silva M. F., Ruiter J. P., IJlst L., Allers P., ten Brink H. J., Jakobs C., Duran M., Tavares de Almeida I., Wanders R. J. Synthesis and intramitochondrial levels of valproyl-coenzyme A metabolites. Anal Biochem. 2001 Mar 1;290(1):60–67. doi: 10.1006/abio.2000.4947. [DOI] [PubMed] [Google Scholar]
  15. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  16. Svensson L. T., Kilpeläinen S. H., Hiltunen J. K., Alexson S. E. Characterization and isolation of enzymes that hydrolyze short-chain acyl-CoA in rat-liver mitochondria. Eur J Biochem. 1996 Jul 15;239(2):526–531. doi: 10.1111/j.1432-1033.1996.0526u.x. [DOI] [PubMed] [Google Scholar]
  17. Turnbull D. M., Bone A. J., Bartlett K., Koundakjian P. P., Sherratt H. S. The effects of valproate on intermediary metabolism in isolated rat hepatocytes and intact rats. Biochem Pharmacol. 1983 Jun 15;32(12):1887–1892. doi: 10.1016/0006-2952(83)90054-0. [DOI] [PubMed] [Google Scholar]
  18. Vreken P., van Lint A. E., Bootsma A. H., Overmars H., Wanders R. J., van Gennip A. H. Quantitative plasma acylcarnitine analysis using electrospray tandem mass spectrometry for the diagnosis of organic acidaemias and fatty acid oxidation defects. J Inherit Metab Dis. 1999 May;22(3):302–306. doi: 10.1023/a:1005587617745. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES