Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 1;363(Pt 1):45–51. doi: 10.1042/0264-6021:3630045

Ceramides increase the activity of the secretory phospholipase A2 and alter its fatty acid specificity.

Kamen S Koumanov 1, Albena B Momchilova 1, Peter J Quinn 1, Claude Wolf 1
PMCID: PMC1222449  PMID: 11903045

Abstract

Modulation of human recombinant secretory type II phospholipase A(2) activity by ceramide and cholesterol was investigated using model glycerophospholipid substrates composed of phosphatidylethanolamine and phosphatidylserine dispersed in aqueous medium. Enzyme activity was monitored by measurement of released fatty acids using capillary GC-MS. Fatty acids from the sn-2 position of the phospholipids were hydrolysed by the enzyme in proportion to the relative abundance of the phospholipid in the substrate. Addition of increasing amounts of ceramide to the substrate progressively enhanced phospholipase activity. The increased activity was accomplished largely by preferential hydrolysis of polyunsaturated fatty acids, particularly arachidonic acid, derived from phosphatidylethanolamine. The addition of sphingomyelin to the substrate glycerophospholipids inhibited phospholipase activity but its progressive substitution by ceramide, so as to mimic sphingomyelinase activity, counteracted the inhibition. The presence of cholesterol in dispersions of glycerophospholipid-substrate-containing ceramides suppressed activation of the enzyme resulting from the presence of ceramide. The molecular basis of enzyme modulation was investigated by analysis of the phase structure of the dispersed lipid substrate during temperature scans from 46 to 20 degrees C using small-angle synchrotron X-ray diffraction. These studies indicated that intermediate structures created after ceramide-dependent phase separation of hexagonal and lamellar phases represent the most susceptible form of the substrate for enzyme hydrolysis.

Full Text

The Full Text of this article is available as a PDF (150.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bezzine S., Koduri R. S., Valentin E., Murakami M., Kudo I., Ghomashchi F., Sadilek M., Lambeau G., Gelb M. H. Exogenously added human group X secreted phospholipase A(2) but not the group IB, IIA, and V enzymes efficiently release arachidonic acid from adherent mammalian cells. J Biol Chem. 2000 Feb 4;275(5):3179–3191. doi: 10.1074/jbc.275.5.3179. [DOI] [PubMed] [Google Scholar]
  2. Bittman R., Kasireddy C. R., Mattjus P., Slotte J. P. Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry. 1994 Oct 4;33(39):11776–11781. doi: 10.1021/bi00205a013. [DOI] [PubMed] [Google Scholar]
  3. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  4. Brown D. A., London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998 Jul 15;164(2):103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
  5. Clark J. D., Lin L. L., Kriz R. W., Ramesha C. S., Sultzman L. A., Lin A. Y., Milona N., Knopf J. L. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell. 1991 Jun 14;65(6):1043–1051. doi: 10.1016/0092-8674(91)90556-e. [DOI] [PubMed] [Google Scholar]
  6. Clark J. D., Schievella A. R., Nalefski E. A., Lin L. L. Cytosolic phospholipase A2. J Lipid Mediat Cell Signal. 1995 Oct;12(2-3):83–117. doi: 10.1016/0929-7855(95)00012-f. [DOI] [PubMed] [Google Scholar]
  7. Cupillard L., Koumanov K., Mattéi M. G., Lazdunski M., Lambeau G. Cloning, chromosomal mapping, and expression of a novel human secretory phospholipase A2. J Biol Chem. 1997 Jun 20;272(25):15745–15752. doi: 10.1074/jbc.272.25.15745. [DOI] [PubMed] [Google Scholar]
  8. Dawson R. M., Irvine R. F., Bray J., Quinn P. J. Long-chain unsaturated diacylglycerols cause a perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipase attack. Biochem Biophys Res Commun. 1984 Dec 14;125(2):836–842. doi: 10.1016/0006-291x(84)90615-6. [DOI] [PubMed] [Google Scholar]
  9. Gelb M. H., Jain M. K., Hanel A. M., Berg O. G. Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospholipases A2. Annu Rev Biochem. 1995;64:653–688. doi: 10.1146/annurev.bi.64.070195.003253. [DOI] [PubMed] [Google Scholar]
  10. Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
  11. Holopainen J. M., Subramanian M., Kinnunen P. K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry. 1998 Dec 15;37(50):17562–17570. doi: 10.1021/bi980915e. [DOI] [PubMed] [Google Scholar]
  12. Huang H. W., Goldberg E. M., Zidovetzki R. Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. Biochem Biophys Res Commun. 1996 Mar 27;220(3):834–838. doi: 10.1006/bbrc.1996.0490. [DOI] [PubMed] [Google Scholar]
  13. Hønger T., Jørgensen K., Biltonen R. L., Mouritsen O. G. Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry. 1996 Jul 16;35(28):9003–9006. doi: 10.1021/bi960866a. [DOI] [PubMed] [Google Scholar]
  14. Jayadev S., Linardic C. M., Hannun Y. A. Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor alpha. J Biol Chem. 1994 Feb 25;269(8):5757–5763. [PubMed] [Google Scholar]
  15. Jiménez-Monreal A. M., Aranda F. J., Micol V., Sánchez-Piñera P., de Godos A., Gómez-Fernández J. C. Influence of the physical state of the membrane on the enzymatic activity and energy of activation of protein kinase C alpha. Biochemistry. 1999 Jun 15;38(24):7747–7754. doi: 10.1021/bi983062z. [DOI] [PubMed] [Google Scholar]
  16. Klapisz E., Masliah J., Béréziat G., Wolf C., Koumanov K. S. Sphingolipids and cholesterol modulate membrane susceptibility to cytosolic phospholipase A(2). J Lipid Res. 2000 Oct;41(10):1680–1688. [PubMed] [Google Scholar]
  17. Koumanov K. S., Quinn P. J., Béréziat G., Wolf C. Cholesterol relieves the inhibitory effect of sphingomyelin on type II secretory phospholipase A2. Biochem J. 1998 Dec 15;336(Pt 3):625–630. doi: 10.1042/bj3360625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koumanov K., Wolf C., Béreziat G. Modulation of human type II secretory phospholipase A2 by sphingomyelin and annexin VI. Biochem J. 1997 Aug 15;326(Pt 1):227–233. doi: 10.1042/bj3260227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu P., Anderson R. G. Compartmentalized production of ceramide at the cell surface. J Biol Chem. 1995 Nov 10;270(45):27179–27185. doi: 10.1074/jbc.270.45.27179. [DOI] [PubMed] [Google Scholar]
  20. Mouritsen O. G., Jørgensen K. Micro-, nano- and meso-scale heterogeneity of lipid bilayers and its influence on macroscopic membrane properties. Mol Membr Biol. 1995 Jan-Mar;12(1):15–20. doi: 10.3109/09687689509038490. [DOI] [PubMed] [Google Scholar]
  21. Pruzanski W., Vadas P., Browning J. Secretory non-pancreatic group II phospholipase A2: role in physiologic and inflammatory processes. J Lipid Mediat. 1993 Nov;8(3):161–167. [PubMed] [Google Scholar]
  22. Rietveld A., Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta. 1998 Nov 10;1376(3):467–479. doi: 10.1016/s0304-4157(98)00019-7. [DOI] [PubMed] [Google Scholar]
  23. Shaikh S. R., Dumaual A. C., Jenski L. J., Stillwell W. Lipid phase separation in phospholipid bilayers and monolayers modeling the plasma membrane. Biochim Biophys Acta. 2001 Jun 6;1512(2):317–328. doi: 10.1016/s0005-2736(01)00335-2. [DOI] [PubMed] [Google Scholar]
  24. Tenchov B., Koynova R., Rapp G. Accelerated formation of cubic phases in phosphatidylethanolamine dispersions. Biophys J. 1998 Aug;75(2):853–866. doi: 10.1016/S0006-3495(98)77574-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsujishita Y., Asaoka Y., Nishizuka Y. Regulation of phospholipase A2 in human leukemia cell lines: its implication for intracellular signaling. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6274–6278. doi: 10.1073/pnas.91.14.6274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Veiga M. P., Arrondo J. L., Goñi F. M., Alonso A. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J. 1999 Jan;76(1 Pt 1):342–350. doi: 10.1016/S0006-3495(99)77201-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Visnjić D., Batinić D., Banfić H. Arachidonic acid mediates interferon-gamma-induced sphingomyelin hydrolysis and monocytic marker expression in HL-60 cell line. Blood. 1997 Jan 1;89(1):81–91. [PubMed] [Google Scholar]
  28. Wolf C., Koumanov K., Tenchov B., Quinn P. J. Cholesterol favors phase separation of sphingomyelin. Biophys Chem. 2001 Feb 15;89(2-3):163–172. doi: 10.1016/s0301-4622(00)00226-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES