Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 1;363(Pt 1):59–66. doi: 10.1042/0264-6021:3630059

Evidence that zymogen granules do not function as an intracellular Ca2+ store for the generation of the Ca2+ signal in rat parotid acinar cells.

Akihiro Nezu 1, Akihiko Tanimura 1, Takao Morita 1, Kazuharu Irie 1, Toshihiko Yajima 1, Yosuke Tojyo 1
PMCID: PMC1222451  PMID: 11903047

Abstract

Rat parotid acinar cells lacking zymogen granules were obtained by inducing granule discharge with the beta-adrenoceptor agonist isoproterenol. To assess whether zymogen granules are involved in the regulation of Ca(2+) signalling as intracellular Ca(2+) stores, changes in cytosolic free Ca(2+) ion concentration ([Ca(2+)](i)) were studied with imaging microscopy in fura-2-loaded parotid acinar cells lacking zymogen granules. The increase in [Ca(2+)](i) induced by muscarinic receptor stimulation was initiated at the apical pole of the acinar cells, and rapidly spread as a Ca(2+) wave towards the basolateral region. The magnitude of the [Ca(2+)](i) response and the speed of the Ca(2+) wave were essentially similar to those in control acinar cells containing zymogen granules. Western blot analysis of the inositol 1,4,5-trisphosphate receptor (IP(3)R) was performed on zymogen granule membranes and microsomes using anti-IP(3)R antibodies. The immunoreactivity of all three IP(3)Rs was clearly observed in the microsomal preparations. Although a weak band of IP(3)R type-2 was detected in the zymogen granule membranes, this band probably resulted from contamination by the endoplasmic reticulum (ER), because calnexin, a marker protein of the ER, was also detected in the same preparation. Furthermore, Western blotting and reverse transcriptase-PCR analysis failed to provide evidence for the expression of ryanodine receptors in rat parotid acinar cells, whereas expression was clearly detectable in rat skeletal muscle, heart and brain. These results suggest that zymogen granules do not have a critical role in Ca(2+) signalling in rat parotid acinar cells.

Full Text

The Full Text of this article is available as a PDF (343.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Ohad I., Schramm M. Dynamic changes in the ultrastructure of the acinar cell of the rat parotid gland during the secretory cycle. J Cell Biol. 1969 Jun;41(3):753–773. doi: 10.1083/jcb.41.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blondel O., Bell G. I., Moody M., Miller R. J., Gibbons S. J. Creation of an inositol 1,4,5-trisphosphate-sensitive Ca2+ store in secretory granules of insulin-producing cells. J Biol Chem. 1994 Nov 4;269(44):27167–27170. [PubMed] [Google Scholar]
  3. Clemente F., Meldolesi J. Calcium and pancreatic secretion. I. Subcellular distribution of calcium and magnesium in the exocrine pancreas of the guinea pig. J Cell Biol. 1975 Apr;65(1):88–102. doi: 10.1083/jcb.65.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DiJulio D. H., Watson E. L., Pessah I. N., Jacobson K. L., Ott S. M., Buck E. D., Singh J. C. Ryanodine receptor type III (Ry3R) identification in mouse parotid acini. Properties and modulation of [3H]ryanodine-binding sites. J Biol Chem. 1997 Jun 20;272(25):15687–15696. doi: 10.1074/jbc.272.25.15687. [DOI] [PubMed] [Google Scholar]
  5. Gerasimenko O. V., Gerasimenko J. V., Belan P. V., Petersen O. H. Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell. 1996 Feb 9;84(3):473–480. doi: 10.1016/s0092-8674(00)81292-1. [DOI] [PubMed] [Google Scholar]
  6. Ichas F., Jouaville L. S., Mazat J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997 Jun 27;89(7):1145–1153. doi: 10.1016/s0092-8674(00)80301-3. [DOI] [PubMed] [Google Scholar]
  7. Ito K., Miyashita Y., Kasai H. Kinetic control of multiple forms of Ca(2+) spikes by inositol trisphosphate in pancreatic acinar cells. J Cell Biol. 1999 Jul 26;146(2):405–413. doi: 10.1083/jcb.146.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kasai H., Augustine G. J. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature. 1990 Dec 20;348(6303):735–738. doi: 10.1038/348735a0. [DOI] [PubMed] [Google Scholar]
  9. Kasai H., Li Y. X., Miyashita Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell. 1993 Aug 27;74(4):669–677. doi: 10.1016/0092-8674(93)90514-q. [DOI] [PubMed] [Google Scholar]
  10. Lee M. G., Xu X., Zeng W., Diaz J., Wojcikiewicz R. J., Kuo T. H., Wuytack F., Racymaekers L., Muallem S. Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem. 1997 Jun 20;272(25):15765–15770. doi: 10.1074/jbc.272.25.15765. [DOI] [PubMed] [Google Scholar]
  11. Liu P., Scott J., Smith P. M. Intracellular calcium signalling in rat parotid acinar cells that lack secretory vesicles. Biochem J. 1998 Mar 1;330(Pt 2):847–852. doi: 10.1042/bj3300847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Looms D. K., Tritsaris K., Nauntofte B., Dissing S. Nitric oxide and cGMP activate Ca2+-release processes in rat parotid acinar cells. Biochem J. 2001 Apr 1;355(Pt 1):87–95. doi: 10.1042/0264-6021:3550087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martinez J. R., Willis S., Puente S., Wells J., Helmke R., Zhang G. H. Evidence for a Ca2+ pool associated with secretory granules in rat submandibular acinar cells. Biochem J. 1996 Dec 1;320(Pt 2):627–634. doi: 10.1042/bj3200627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marty A. Calcium release and internal calcium regulation in acinar cells of exocrine glands. J Membr Biol. 1991 Dec;124(3):189–197. doi: 10.1007/BF01994353. [DOI] [PubMed] [Google Scholar]
  15. Mountian I., Manolopoulos V. G., De Smedt H., Parys J. B., Missiaen L., Wuytack F. Expression patterns of sarco/endoplasmic reticulum Ca(2+)-ATPase and inositol 1,4,5-trisphosphate receptor isoforms in vascular endothelial cells. Cell Calcium. 1999 May;25(5):371–380. doi: 10.1054/ceca.1999.0034. [DOI] [PubMed] [Google Scholar]
  16. Murayama T., Oba T., Katayama E., Oyamada H., Oguchi K., Kobayashi M., Otsuka K., Ogawa Y. Further characterization of the type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm. J Biol Chem. 1999 Jun 11;274(24):17297–17308. doi: 10.1074/jbc.274.24.17297. [DOI] [PubMed] [Google Scholar]
  17. Mészáros L. G., Bak J., Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993 Jul 1;364(6432):76–79. doi: 10.1038/364076a0. [DOI] [PubMed] [Google Scholar]
  18. Nakagaki I., Sasaki S., Shiguma M., Imai Y. Distribution of elements in the pancreatic exocrine cells determined by electron probe X-ray microanalysis. Pflugers Arch. 1984 Aug;401(4):340–345. doi: 10.1007/BF00584333. [DOI] [PubMed] [Google Scholar]
  19. Nathanson M. H., Fallon M. B., Padfield P. J., Maranto A. R. Localization of the type 3 inositol 1,4,5-trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. J Biol Chem. 1994 Feb 18;269(7):4693–4696. [PubMed] [Google Scholar]
  20. Nicaise G., Maggio K., Thirion S., Horoyan M., Keicher E. The calcium loading of secretory granules. A possible key event in stimulus-secretion coupling. Biol Cell. 1992;75(2):89–99. doi: 10.1016/0248-4900(92)90128-n. [DOI] [PubMed] [Google Scholar]
  21. Pozzan T., Rizzuto R., Volpe P., Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994 Jul;74(3):595–636. doi: 10.1152/physrev.1994.74.3.595. [DOI] [PubMed] [Google Scholar]
  22. Ravazzola M., Halban P. A., Orci L. Inositol 1,4,5-trisphosphate receptor subtype 3 in pancreatic islet cell secretory granules revisited. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2745–2748. doi: 10.1073/pnas.93.7.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shiba R., Hamada T., Kawakatsu K. Histochemical and electron microscopical studies on the effect of duct ligation of rat salivary glands. Arch Oral Biol. 1972 Feb;17(2):299–309. doi: 10.1016/0003-9969(72)90213-0. [DOI] [PubMed] [Google Scholar]
  24. Tanimura A., Matsumoto Y., Tojyo Y. Evidence that isoproterenol-induced Ca2(+)-mobilization in rat parotid acinar cells is not mediated by activation of beta-adrenoceptors. Biochim Biophys Acta. 1990 Dec 10;1055(3):273–277. doi: 10.1016/0167-4889(90)90043-d. [DOI] [PubMed] [Google Scholar]
  25. Tanimura A., Matsumoto Y., Tojyo Y. Polarized Ca2+ release in saponin-permeabilized parotid acinar cells evoked by flash photolysis of 'caged' inositol 1,4,5-trisphosphate. Biochem J. 1998 Jun 15;332(Pt 3):769–772. doi: 10.1042/bj3320769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tanimura A., Tojyo Y., Turner R. J. Evidence that type I, II, and III inositol 1,4,5-trisphosphate receptors can occur as integral plasma membrane proteins. J Biol Chem. 2000 Sep 1;275(35):27488–27493. doi: 10.1074/jbc.M004495200. [DOI] [PubMed] [Google Scholar]
  27. Thorn P., Lawrie A. M., Smith P. M., Gallacher D. V., Petersen O. H. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 1993 Aug 27;74(4):661–668. doi: 10.1016/0092-8674(93)90513-p. [DOI] [PubMed] [Google Scholar]
  28. Tinel H., Cancela J. M., Mogami H., Gerasimenko J. V., Gerasimenko O. V., Tepikin A. V., Petersen O. H. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals. EMBO J. 1999 Sep 15;18(18):4999–5008. doi: 10.1093/emboj/18.18.4999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tjoelker L. W., Seyfried C. E., Eddy R. L., Jr, Byers M. G., Shows T. B., Calderon J., Schreiber R. B., Gray P. W. Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry. 1994 Mar 22;33(11):3229–3236. doi: 10.1021/bi00177a013. [DOI] [PubMed] [Google Scholar]
  30. Tojyo Y., Tanimura A., Matsumoto Y. Imaging of intracellular Ca2+ waves induced by muscarinic receptor stimulation in rat parotid acinar cells. Cell Calcium. 1997 Dec;22(6):455–462. doi: 10.1016/s0143-4160(97)90073-7. [DOI] [PubMed] [Google Scholar]
  31. Tojyo Y., Tanimura A., Matsumoto Y. Monitoring of Ca2+ release from intracellular stores in permeabilized rat parotid acinar cells using the fluorescent indicators Mag-fura-2 and calcium green C18. Biochem Biophys Res Commun. 1997 Nov 7;240(1):189–195. doi: 10.1006/bbrc.1997.7584. [DOI] [PubMed] [Google Scholar]
  32. Yoo S. H., So S. H., Kweon H. S., Lee J. S., Kang M. K., Jeon C. J. Coupling of the inositol 1,4,5-trisphosphate receptor and chromogranins A and B in secretory granules. J Biol Chem. 2000 Apr 28;275(17):12553–12559. doi: 10.1074/jbc.275.17.12553. [DOI] [PubMed] [Google Scholar]
  33. Yule D. I., Ernst S. A., Ohnishi H., Wojcikiewicz R. J. Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells. J Biol Chem. 1997 Apr 4;272(14):9093–9098. doi: 10.1074/jbc.272.14.9093. [DOI] [PubMed] [Google Scholar]
  34. Zhang X., Wen J., Bidasee K. R., Besch H. R., Jr, Rubin R. P. Ryanodine receptor expression is associated with intracellular Ca2+ release in rat parotid acinar cells. Am J Physiol. 1997 Oct;273(4 Pt 1):C1306–C1314. doi: 10.1152/ajpcell.1997.273.4.C1306. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES