Abstract
Solute carrier 11a1 (Slc11a1; formerly Nramp1; where Nramp stands for natural-resistance-associated macrophage protein) is a proton/bivalent cation antiporter that localizes to late endosomes/lysosomes and controls resistance to pathogens. In the present study the role of Slc11a1 in iron turnover is examined in macrophages transfected with Slc11a1(Gly169) (wild-type) or Slc11a1(Asp169) (mutant=functional null) alleles. Following direct acquisition of transferrin (Tf)-bound iron via the Tf receptor, iron uptake and release was equivalent in wild-type and mutant macrophages and was not influenced by interferon-gamma/lipopolysaccharide activation. Following phagocytosis of [(59)Fe]Tf-anti-Tf immune complexes, iron uptake was equivalent and up-regulated similarly with activation, but intracellular distribution was markedly different. In wild-type macrophages most iron was in the soluble (60%) rather than insoluble (12%) fraction, with 28% ferritin (Ft)-bound. With activation, the soluble component increased to 82% at the expense of Ft-bound iron (<5%). In mutant macrophages, 40-50% of iron was in insoluble form, 50-60% was soluble and <5% was Ft-bound. Western-blot analysis confirmed failure of mutant macrophages to degrade complexes 24 h after phagocytic uptake. Confocal microscopy showed that complexes were within lysosome-associated membrane protein 1-positive vesicles in wild-type and mutant macrophages at 30 min and 24 h, implying failure in the degradative process in mature phagosomes in mutant macrophages. NO-mediated iron release was 2.4-fold higher in activated wild-type macrophages compared with mutant macrophages. Overall, our data suggest that iron acquired by phagocytosis and degradation is retained within the phagosomal compartment in wild-type macrophages, and that NO triggers iron release by direct secretion of phagosomal contents rather than via the cytoplasm.
Full Text
The Full Text of this article is available as a PDF (203.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abboud S., Haile D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000 Jun 30;275(26):19906–19912. doi: 10.1074/jbc.M000713200. [DOI] [PubMed] [Google Scholar]
- Alford C. E., King T. E., Jr, Campbell P. A. Role of transferrin, transferrin receptors, and iron in macrophage listericidal activity. J Exp Med. 1991 Aug 1;174(2):459–466. doi: 10.1084/jem.174.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkinson P. G., Barton C. H. High level expression of Nramp1G169 in RAW264.7 cell transfectants: analysis of intracellular iron transport. Immunology. 1999 Apr;96(4):656–662. doi: 10.1046/j.1365-2567.1999.00672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker S. T., Barton C. H., Biggs T. E. A negative autoregulatory link between Nramp1 function and expression. J Leukoc Biol. 2000 Apr;67(4):501–507. doi: 10.1002/jlb.67.4.501. [DOI] [PubMed] [Google Scholar]
- Barton C. H., Whitehead S. H., Blackwell J. M. Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on oxidative burst and nitric oxide pathways. Mol Med. 1995 Mar;1(3):267–279. [PMC free article] [PubMed] [Google Scholar]
- Blackwell J. M., Goswami T., Evans C. A., Sibthorpe D., Papo N., White J. K., Searle S., Miller E. N., Peacock C. S., Mohammed H. SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol. 2001 Dec;3(12):773–784. doi: 10.1046/j.1462-5822.2001.00150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornman L., Baladi S., Richard M. J., Tyrrell R. M., Polla B. S. Differential regulation and expression of stress proteins and ferritin in human monocytes. J Cell Physiol. 1999 Jan;178(1):1–8. doi: 10.1002/(SICI)1097-4652(199901)178:1<1::AID-JCP1>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Crocker P. R., Blackwell J. M., Bradley D. J. Expression of the natural resistance gene Lsh in resident liver macrophages. Infect Immun. 1984 Mar;43(3):1033–1040. doi: 10.1128/iai.43.3.1033-1040.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dlaska M., Weiss G. Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression. J Immunol. 1999 May 15;162(10):6171–6177. [PubMed] [Google Scholar]
- Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000 Feb 17;403(6771):776–781. doi: 10.1038/35001596. [DOI] [PubMed] [Google Scholar]
- Emerson M. R., LeVine S. M. Heme oxygenase-1 and NADPH cytochrome P450 reductase expression in experimental allergic encephalomyelitis: an expanded view of the stress response. J Neurochem. 2000 Dec;75(6):2555–2562. doi: 10.1046/j.1471-4159.2000.0752555.x. [DOI] [PubMed] [Google Scholar]
- Esparza I., Brock J. H. Release of iron by resident and stimulated mouse peritoneal macrophages following ingestion and degradation of transferrin-antitransferrin immune complexes. Br J Haematol. 1981 Dec;49(4):603–614. doi: 10.1111/j.1365-2141.1981.tb07270.x. [DOI] [PubMed] [Google Scholar]
- Fritz P., Saal J. G., Wicherek C., König A., Laschner W., Rautenstrauch H. Quantitative photometrical assessment of iron deposits in synovial membranes in different joint diseases. Rheumatol Int. 1996;15(5):211–216. doi: 10.1007/BF00290523. [DOI] [PubMed] [Google Scholar]
- Goswami T., Bhattacharjee A., Babal P., Searle S., Moore E., Li M., Blackwell J. M. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J. 2001 Mar 15;354(Pt 3):511–519. doi: 10.1042/0264-6021:3540511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruenheid S., Canonne-Hergaux F., Gauthier S., Hackam D. J., Grinstein S., Gros P. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med. 1999 Mar 1;189(5):831–841. doi: 10.1084/jem.189.5.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruenheid S., Pinner E., Desjardins M., Gros P. Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med. 1997 Feb 17;185(4):717–730. doi: 10.1084/jem.185.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackam D. J., Rotstein O. D., Zhang W., Gruenheid S., Gros P., Grinstein S. Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med. 1998 Jul 20;188(2):351–364. doi: 10.1084/jem.188.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrero M. B., Viggiano J. M., Pérez Martínez S., de Gimeno M. F. Evidence that nitric oxide synthase is involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa. Reprod Fertil Dev. 1997;9(4):433–439. doi: 10.1071/r96044. [DOI] [PubMed] [Google Scholar]
- Jabado N., Jankowski A., Dougaparsad S., Picard V., Grinstein S., Gros P. Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med. 2000 Nov 6;192(9):1237–1248. doi: 10.1084/jem.192.9.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo H., Saito K., Grasso J. P., Aisen P. Iron metabolism in the erythrophagocytosing Kupffer cell. Hepatology. 1988 Jan-Feb;8(1):32–38. doi: 10.1002/hep.1840080108. [DOI] [PubMed] [Google Scholar]
- Krantz S. B. Pathogenesis and treatment of the anemia of chronic disease. Am J Med Sci. 1994 May;307(5):353–359. doi: 10.1097/00000441-199405000-00009. [DOI] [PubMed] [Google Scholar]
- Kuhn D. E., Baker B. D., Lafuse W. P., Zwilling B. S. Differential iron transport into phagosomes isolated from the RAW264.7 macrophage cell lines transfected with Nramp1Gly169 or Nramp1Asp169. J Leukoc Biol. 1999 Jul;66(1):113–119. doi: 10.1002/jlb.66.1.113. [DOI] [PubMed] [Google Scholar]
- Kuhn D. E., Lafuse W. P., Zwilling B. S. Iron transport into mycobacterium avium-containing phagosomes from an Nramp1(Gly169)-transfected RAW264.7 macrophage cell line. J Leukoc Biol. 2001 Jan;69(1):43–49. [PubMed] [Google Scholar]
- Lafuse W. P., Alvarez G. R., Zwilling B. S. Regulation of Nramp1 mRNA stability by oxidants and protein kinase C in RAW264.7 macrophages expressing Nramp1(Gly169). Biochem J. 2000 Nov 1;351(Pt 3):687–696. [PMC free article] [PubMed] [Google Scholar]
- Mulero V., Brock J. H. Regulation of iron metabolism in murine J774 macrophages: role of nitric oxide-dependent and -independent pathways following activation with gamma interferon and lipopolysaccharide. Blood. 1999 Oct 1;94(7):2383–2389. [PubMed] [Google Scholar]
- Oria R., Alvarez-Hernández X., Licéaga J., Brock J. H. Uptake and handling of iron from transferrin, lactoferrin and immune complexes by a macrophage cell line. Biochem J. 1988 May 15;252(1):221–225. doi: 10.1042/bj2520221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakaida I., Kyle M. E., Farber J. L. Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress. Mol Pharmacol. 1990 Mar;37(3):435–442. [PubMed] [Google Scholar]
- Searle S., Bright N. A., Roach T. I., Atkinson P. G., Barton C. H., Meloen R. H., Blackwell J. M. Localisation of Nramp1 in macrophages: modulation with activation and infection. J Cell Sci. 1998 Oct;111(Pt 19):2855–2866. doi: 10.1242/jcs.111.19.2855. [DOI] [PubMed] [Google Scholar]
- Stinchcombe J. C., Griffiths G. M. Regulated secretion from hemopoietic cells. J Cell Biol. 1999 Oct 4;147(1):1–6. doi: 10.1083/jcb.147.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VanUffelen B. E., VanSteveninck J., Elferink J. G. Potentiation and inhibition of fMLP-activated exocytosis in neutrophils by exogenous nitric oxide. Immunopharmacology. 1997 Oct;37(2-3):257–267. doi: 10.1016/s0162-3109(97)00072-6. [DOI] [PubMed] [Google Scholar]
- Yip R., Dallman P. R. The roles of inflammation and iron deficiency as causes of anemia. Am J Clin Nutr. 1988 Nov;48(5):1295–1300. doi: 10.1093/ajcn/48.5.1295. [DOI] [PubMed] [Google Scholar]