Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 1;363(Pt 1):105–115. doi: 10.1042/0264-6021:3630105

Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50.

Paul D Veith 1, Gert H Talbo 1, Nada Slakeski 1, Stuart G Dashper 1, Caroline Moore 1, Rita A Paolini 1, Eric C Reynolds 1
PMCID: PMC1222457  PMID: 11903053

Abstract

Porphyromonas gingivalis is an anaerobic, asaccharolytic Gram-negative rod associated with chronic periodontitis. We have undertaken a proteomic study of the outer membrane of P. gingivalis strain W50 using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteins were identified by reference to the pre-release genomic sequence of P. gingivalis available from The Institute for Genomic Research. Out of 39 proteins identified, five were TonB-linked outer membrane receptors, ten others were putative integral outer membrane proteins and four were putative lipoproteins. Pyroglutamate was found to be the N-terminal residue of seven of the proteins, and was predicted to be the N-terminal residue of 13 additional proteins. The RgpA, Kgp and HagA polyproteins were identified as fully processed domains in outer membranes prepared in the presence of proteinase inhibitors. Several domains were found to be C-terminally truncated 16-57 residues upstream from the N-terminus of the following domain, at a residue penultimate to a lysine. This pattern of C-terminal processing was not detected in a W50 strain isogenic mutant lacking the lysine-specific proteinase Kgp. Construction of another W50 isogenic mutant lacking the arginine-specific proteinases indicated that RgpB and/or RgpA were also involved in domain processing. The C-terminal adhesin of RgpA, designated RgpA27, together with RgpB and two newly identified proteins designated P27 and P59 were found to migrate on two-dimensional gels as vertical streaks at a molecular mass 13-42 kDa higher than that calculated from their gene sequences. The electrophoretic behaviour of these proteins, together with their immunoreactivity with a monoclonal antibody that recognizes lipopolysaccharide, is consistent with a modification that could anchor the proteins to the outer membrane.

Full Text

The Full Text of this article is available as a PDF (287.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aduse-Opoku J., Davies N. N., Gallagher A., Hashim A., Evans H. E., Rangarajan M., Slaney J. M., Curtis M. A. Generation of lys-gingipain protease activity in Porphyromonas gingivalis W50 is independent of Arg-gingipain protease activities. Microbiology. 2000 Aug;146(Pt 8):1933–1940. doi: 10.1099/00221287-146-8-1933. [DOI] [PubMed] [Google Scholar]
  2. Aduse-Opoku J., Slaney J. M., Rangarajan M., Muir J., Young K. A., Curtis M. A. The Tla protein of Porphyromonas gingivalis W50: a homolog of the RI protease precursor (PrpRI) is an outer membrane receptor required for growth on low levels of hemin. J Bacteriol. 1997 Aug;179(15):4778–4788. doi: 10.1128/jb.179.15.4778-4788.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amano A., Nakamura T., Kimura S., Morisaki I., Nakagawa I., Kawabata S., Hamada S. Molecular interactions of Porphyromonas gingivalis fimbriae with host proteins: kinetic analyses based on surface plasmon resonance. Infect Immun. 1999 May;67(5):2399–2405. doi: 10.1128/iai.67.5.2399-2405.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhogal P. S., Slakeski N., Reynolds E. C. A cell-associated protein complex of Porphyromonas gingivalis W50 composed of Arg- and Lys-specific cysteine proteinases and adhesins. Microbiology. 1997 Jul;143(Pt 7):2485–2495. doi: 10.1099/00221287-143-7-2485. [DOI] [PubMed] [Google Scholar]
  6. Chen W. P., Kuo T. T. A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res. 1993 May 11;21(9):2260–2260. doi: 10.1093/nar/21.9.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curtis M. A., Kuramitsu H. K., Lantz M., Macrina F. L., Nakayama K., Potempa J., Reynolds E. C., Aduse-Opoku J. Molecular genetics and nomenclature of proteases of Porphyromonas gingivalis. J Periodontal Res. 1999 Nov;34(8):464–472. doi: 10.1111/j.1600-0765.1999.tb02282.x. [DOI] [PubMed] [Google Scholar]
  8. Curtis M. A., Slaney J. M., Carman R. J., Johnson N. W. Identification of the major surface protein antigens of Porphyromonas gingivalis using IgG antibody reactivity of periodontal case-control serum. Oral Microbiol Immunol. 1991 Dec;6(6):321–326. doi: 10.1111/j.1399-302x.1991.tb00502.x. [DOI] [PubMed] [Google Scholar]
  9. Curtis M. A., Thickett A., Slaney J. M., Rangarajan M., Aduse-Opoku J., Shepherd P., Paramonov N., Hounsell E. F. Variable carbohydrate modifications to the catalytic chains of the RgpA and RgpB proteases of Porphyromonas gingivalis W50. Infect Immun. 1999 Aug;67(8):3816–3823. doi: 10.1128/iai.67.8.3816-3823.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dashper S. G., Hendtlass A., Slakeski N., Jackson C., Cross K. J., Brownfield L., Hamilton R., Barr I., Reynolds E. C. Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis. J Bacteriol. 2000 Nov;182(22):6456–6462. doi: 10.1128/jb.182.22.6456-6462.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dashper S. G., O'Brien-Simpson N. M., Bhogal P. S., Franzmann A. D., Reynolds E. C. Purification and characterization of a putative fimbrial protein/receptor of Porphyromonas gingivalis. Aust Dent J. 1998 Apr;43(2):99–104. [PubMed] [Google Scholar]
  12. Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol. 1973 Sep;115(3):717–722. doi: 10.1128/jb.115.3.717-722.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fletcher H. M., Schenkein H. A., Morgan R. M., Bailey K. A., Berry C. R., Macrina F. L. Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene. Infect Immun. 1995 Apr;63(4):1521–1528. doi: 10.1128/iai.63.4.1521-1528.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Görg A., Boguth G., Obermaier C., Posch A., Weiss W. Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis. 1995 Jul;16(7):1079–1086. doi: 10.1002/elps.11501601183. [DOI] [PubMed] [Google Scholar]
  15. Han N., Whitlock J., Progulske-Fox A. The hemagglutinin gene A (hagA) of Porphyromonas gingivalis 381 contains four large, contiguous, direct repeats. Infect Immun. 1996 Oct;64(10):4000–4007. doi: 10.1128/iai.64.10.4000-4007.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hanley S. A., Aduse-Opoku J., Curtis M. A. A 55-kilodalton immunodominant antigen of Porphyromonas gingivalis W50 has arisen via horizontal gene transfer. Infect Immun. 1999 Mar;67(3):1157–1171. doi: 10.1128/iai.67.3.1157-1171.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hendtlass A., Dashper S. G., Reynolds E. C. Identification of an antigenic protein Pga30 from Porphyromonas gingivalis W50. Oral Microbiol Immunol. 2000 Dec;15(6):383–387. doi: 10.1034/j.1399-302x.2000.150608.x. [DOI] [PubMed] [Google Scholar]
  18. Izard J. W., Kendall D. A. Signal peptides: exquisitely designed transport promoters. Mol Microbiol. 1994 Sep;13(5):765–773. doi: 10.1111/j.1365-2958.1994.tb00469.x. [DOI] [PubMed] [Google Scholar]
  19. Karamyshev A. L., Karamysheva Z. N., Kajava A. V., Ksenzenko V. N., Nesmeyanova M. A. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. J Mol Biol. 1998 Apr 10;277(4):859–870. doi: 10.1006/jmbi.1997.1617. [DOI] [PubMed] [Google Scholar]
  20. Koebnik R., Locher K. P., Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000 Jul;37(2):239–253. doi: 10.1046/j.1365-2958.2000.01983.x. [DOI] [PubMed] [Google Scholar]
  21. Koebnik R. Proposal for a peptidoglycan-associating alpha-helical motif in the C-terminal regions of some bacterial cell-surface proteins. Mol Microbiol. 1995 Jun;16(6):1269–1270. doi: 10.1111/j.1365-2958.1995.tb02348.x. [DOI] [PubMed] [Google Scholar]
  22. Koronakis V., Sharff A., Koronakis E., Luisi B., Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature. 2000 Jun 22;405(6789):914–919. doi: 10.1038/35016007. [DOI] [PubMed] [Google Scholar]
  23. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  24. Maley J., Shoemaker N. B., Roberts I. S. The introduction of colonic-Bacteroides shuttle plasmids into Porphyromonas gingivalis: identification of a putative P. gingivalis insertion-sequence element. FEMS Microbiol Lett. 1992 May 15;72(1):75–81. doi: 10.1016/0378-1097(92)90492-7. [DOI] [PubMed] [Google Scholar]
  25. Messner P. Bacterial glycoproteins. Glycoconj J. 1997 Jan;14(1):3–11. doi: 10.1023/a:1018551228663. [DOI] [PubMed] [Google Scholar]
  26. Molloy M. P., Herbert B. R., Slade M. B., Rabilloud T., Nouwens A. S., Williams K. L., Gooley A. A. Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem. 2000 May;267(10):2871–2881. doi: 10.1046/j.1432-1327.2000.01296.x. [DOI] [PubMed] [Google Scholar]
  27. Nakai K., Kanehisa M. Expert system for predicting protein localization sites in gram-negative bacteria. Proteins. 1991;11(2):95–110. doi: 10.1002/prot.340110203. [DOI] [PubMed] [Google Scholar]
  28. O'Brien-Simpson N. M., Paolini R. A., Hoffmann B., Slakeski N., Dashper S. G., Reynolds E. C. Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect Immun. 2001 Dec;69(12):7527–7534. doi: 10.1128/IAI.69.12.7527-7534.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Okuda K., Takazoe I. Haemagglutinating activity of Bacteroides melaninogenicus. Arch Oral Biol. 1974 May;19(5):415–416. doi: 10.1016/0003-9969(74)90184-8. [DOI] [PubMed] [Google Scholar]
  30. Pike R., McGraw W., Potempa J., Travis J. Lysine- and arginine-specific proteinases from Porphyromonas gingivalis. Isolation, characterization, and evidence for the existence of complexes with hemagglutinins. J Biol Chem. 1994 Jan 7;269(1):406–411. [PubMed] [Google Scholar]
  31. Potempa J., Mikolajczyk-Pawlinska J., Brassell D., Nelson D., Thøgersen I. B., Enghild J. J., Travis J. Comparative properties of two cysteine proteinases (gingipains R), the products of two related but individual genes of Porphyromonas gingivalis. J Biol Chem. 1998 Aug 21;273(34):21648–21657. doi: 10.1074/jbc.273.34.21648. [DOI] [PubMed] [Google Scholar]
  32. Rangarajan M., Smith S. J., U S., Curtis M. A. Biochemical characterization of the arginine-specific proteases of Porphyromonas gingivalis W50 suggests a common precursor. Biochem J. 1997 May 1;323(Pt 3):701–709. doi: 10.1042/bj3230701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ross B. C., Czajkowski L., Hocking D., Margetts M., Webb E., Rothel L., Patterson M., Agius C., Camuglia S., Reynolds E. Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine. 2001 Jul 20;19(30):4135–4142. doi: 10.1016/s0264-410x(01)00173-6. [DOI] [PubMed] [Google Scholar]
  34. Sanchez J. C., Rouge V., Pisteur M., Ravier F., Tonella L., Moosmayer M., Wilkins M. R., Hochstrasser D. F. Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis. 1997 Mar-Apr;18(3-4):324–327. doi: 10.1002/elps.1150180305. [DOI] [PubMed] [Google Scholar]
  35. Simpson W., Olczak T., Genco C. A. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol. 2000 Oct;182(20):5737–5748. doi: 10.1128/jb.182.20.5737-5748.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Slakeski N., Bhogal P. S., O'Brien-Simpson N. M., Reynolds E. C. Characterization of a second cell-associated Arg-specific cysteine proteinase of Porphyromonas gingivalis and identification of an adhesin-binding motif involved in association of the prtR and prtK proteinases and adhesins into large complexes. Microbiology. 1998 Jun;144(Pt 6):1583–1592. doi: 10.1099/00221287-144-6-1583. [DOI] [PubMed] [Google Scholar]
  37. Slakeski N., Cleal S. M., Bhogal P. S., Reynolds E. C. Characterization of a Porphyromonas gingivalis gene prtK that encodes a lysine-specific cysteine proteinase and three sequence-related adhesins. Oral Microbiol Immunol. 1999 Apr;14(2):92–97. doi: 10.1034/j.1399-302x.1999.140203.x. [DOI] [PubMed] [Google Scholar]
  38. Slakeski N., Cleal S. M., Reynolds E. C. Characterization of a Porphyromonas gingivalis gene prtR that encodes an arginine-specific thiol proteinase and multiple adhesins. Biochem Biophys Res Commun. 1996 Jul 25;224(3):605–610. doi: 10.1006/bbrc.1996.1073. [DOI] [PubMed] [Google Scholar]
  39. Slakeski N., Dashper S. G., Cook P., Poon C., Moore C., Reynolds E. C. A Porphyromonas gingivalis genetic locus encoding a heme transport system. Oral Microbiol Immunol. 2000 Dec;15(6):388–392. doi: 10.1034/j.1399-302x.2000.150609.x. [DOI] [PubMed] [Google Scholar]
  40. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L., Jr Microbial complexes in subgingival plaque. J Clin Periodontol. 1998 Feb;25(2):134–144. doi: 10.1111/j.1600-051x.1998.tb02419.x. [DOI] [PubMed] [Google Scholar]
  41. Struyvé M., Moons M., Tommassen J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol. 1991 Mar 5;218(1):141–148. doi: 10.1016/0022-2836(91)90880-f. [DOI] [PubMed] [Google Scholar]
  42. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Travis J., Pike R., Imamura T., Potempa J. Porphyromonas gingivalis proteinases as virulence factors in the development of periodontitis. J Periodontal Res. 1997 Jan;32(1 Pt 2):120–125. doi: 10.1111/j.1600-0765.1997.tb01392.x. [DOI] [PubMed] [Google Scholar]
  44. Veith P. D., Talbo G. H., Slakeski N., Reynolds E. C. Identification of a novel heterodimeric outer membrane protein of Porphyromonas gingivalis by two-dimensional gel electrophoresis and peptide mass fingerprinting. Eur J Biochem. 2001 Sep;268(17):4748–4757. doi: 10.1046/j.1432-1327.2001.02399.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES