Abstract
The roles of the filamentous actin (F-actin) cytoskeleton and the endoplasmic reticulum (ER) in the mechanism by which store-operated Ca(2+) channels (SOCs) and other plasma-membrane Ca(2+) channels are activated in rat hepatocytes in primary culture were investigated using cytochalasin D as a probe. Inhibition of thapsigargin-induced Ca(2+) inflow by cytochalasin D depended on the concentration and time of treatment, with maximum inhibition observed with 0.1 microM cytochalasin D for 3 h. Cytochalasin D (0.1 microM for 3 h) did not inhibit the total amount of Ca(2+) released from the ER in response to thapsigargin but did alter the kinetics of Ca(2+) release. The effects of cytochalasin D (0.1 microM) on vasopressin-induced Ca(2+) inflow were similar to those on thapsigargin-induced Ca(2+) inflow, except that cytochalasin D did inhibit vasopressin-induced release of Ca(2+) from the ER. Cytochalasin D (0.1 microM) inhibited vasopressin-induced Mn(2+) inflow (predominantly through intracellular messenger-activated non-selective cation channels), but the degree of inhibition was less than that of vasopressin-induced Ca(2+) inflow (predominantly through Ca(2+)-selective SOCs). Maitotoxin- and hypotonic shock-induced Ca(2+) inflow were enhanced rather than inhibited by 0.1 microM cytochalasin D. Treatment with 0.1 microM cytochalasin D substantially reduced the amount of F-actin at the cell cortex, whereas 5 microM cytochalasin D increased the total amount of F-actin and caused an irregular distribution of F-actin at the cell cortex. Cytochalasin D (0.1 microM) caused no significant change in the overall arrangement of the ER [monitored using 3',3'-dihexyloxacarbocyanine iodide [DiOC(6)(3)] in fixed cells] but disrupted the fine structure of the smooth ER and reduced the diffusion of DiOC(6)(3) in the ER in live hepatocytes after photobleaching. It is concluded that (i) the concentration of cytochalasin D is a critical factor in the use of this agent as a probe to disrupt the cortical F-actin cytoskeleton in rat hepatocytes, (ii) a reduction in the amount of cortical F-actin inhibits SOCs but not intracellular messenger-activated non-selective cation channels, and (iii) inhibition of the activation of SOCs and reduction in the amount of cortical F-actin is associated with disruption of the organization of the ER.
Full Text
The Full Text of this article is available as a PDF (313.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barritt G. J. Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J. 1999 Jan 15;337(Pt 2):153–169. [PMC free article] [PubMed] [Google Scholar]
- Baumann O., Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol. 2001;205:149–214. doi: 10.1016/s0074-7696(01)05004-5. [DOI] [PubMed] [Google Scholar]
- Bear C. E. A nonselective cation channel in rat liver cells is activated by membrane stretch. Am J Physiol. 1990 Mar;258(3 Pt 1):C421–C428. doi: 10.1152/ajpcell.1990.258.3.C421. [DOI] [PubMed] [Google Scholar]
- Berven L. A., Crouch M. F., Katsis F., Kemp B. E., Harland L. M., Barritt G. J. Evidence that the pertussis toxin-sensitive trimeric GTP-binding protein Gi2 is required for agonist- and store-activated Ca2+ inflow in hepatocytes. J Biol Chem. 1995 Oct 27;270(43):25893–25897. doi: 10.1074/jbc.270.43.25893. [DOI] [PubMed] [Google Scholar]
- Brereton H. M., Chen J., Rychkov G., Harland M. L., Barritt G. J. Maitotoxin activates an endogenous non-selective cation channel and is an effective initiator of the activation of the heterologously expressed hTRPC-1 (transient receptor potential) non-selective cation channel in H4-IIE liver cells. Biochim Biophys Acta. 2001 Aug 22;1540(2):107–126. doi: 10.1016/s0167-4889(01)00124-0. [DOI] [PubMed] [Google Scholar]
- Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott A. C. Recent developments in non-excitable cell calcium entry. Cell Calcium. 2001 Aug;30(2):73–93. doi: 10.1054/ceca.2001.0215. [DOI] [PubMed] [Google Scholar]
- Fernando K. C., Barritt G. J. Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions. Biochim Biophys Acta. 1995 Jul 20;1268(1):97–106. doi: 10.1016/0167-4889(95)00041-p. [DOI] [PubMed] [Google Scholar]
- Fernando K. C., Gregory R. B., Katsis F., Kemp B. E., Barritt G. J. Evidence that a low-molecular-mass GTP-binding protein is required for store-activated Ca2+ inflow in hepatocytes. Biochem J. 1997 Dec 1;328(Pt 2):463–471. doi: 10.1042/bj3280463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franki N., Ding G., Gao Y., Hays R. M. Effect of cytochalasin D on the actin cytoskeleton of the toad bladder epithelial cell. Am J Physiol. 1992 Nov;263(5 Pt 1):C995–1000. doi: 10.1152/ajpcell.1992.263.5.C995. [DOI] [PubMed] [Google Scholar]
- Golovina V. A., Blaustein M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997 Mar 14;275(5306):1643–1648. doi: 10.1126/science.275.5306.1643. [DOI] [PubMed] [Google Scholar]
- Graf J., Häussinger D. Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone actions and metabolism. J Hepatol. 1996;24 (Suppl 1):53–77. [PubMed] [Google Scholar]
- Gregory R. B., Rychkov G., Barritt G. J. Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J. 2001 Mar 1;354(Pt 2):285–290. doi: 10.1042/0264-6021:3540285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregory R. B., Wilcox R. A., Berven L. A., van Straten N. C., van der Marel G. A., van Boom J. H., Barritt G. J. Evidence for the involvement of a small subregion of the endoplasmic reticulum in the inositol trisphosphate receptor-induced activation of Ca2+ inflow in rat hepatocytes. Biochem J. 1999 Jul 15;341(Pt 2):401–408. [PMC free article] [PubMed] [Google Scholar]
- Grimaldi M., Favit A., Alkon D. L. cAMP-induced cytoskeleton rearrangement increases calcium transients through the enhancement of capacitative calcium entry. J Biol Chem. 1999 Nov 19;274(47):33557–33564. doi: 10.1074/jbc.274.47.33557. [DOI] [PubMed] [Google Scholar]
- Guihard G., Noel J., Capiod T. Ca2+ depletion and inositol 1,4,5-trisphosphate-evoked activation of Ca2+ entry in single guinea pig hepatocytes. J Biol Chem. 2000 May 5;275(18):13411–13414. doi: 10.1074/jbc.275.18.13411. [DOI] [PubMed] [Google Scholar]
- Holda J. R., Blatter L. A. Capacitative calcium entry is inhibited in vascular endothelial cells by disruption of cytoskeletal microfilaments. FEBS Lett. 1997 Feb 17;403(2):191–196. doi: 10.1016/s0014-5793(97)00051-3. [DOI] [PubMed] [Google Scholar]
- Kass G. E., Llopis J., Chow S. C., Duddy S. K., Orrenius S. Receptor-operated calcium influx in rat hepatocytes. Identification and characterization using manganese. J Biol Chem. 1990 Oct 15;265(29):17486–17492. [PubMed] [Google Scholar]
- Kass G. E., Webb D. L., Chow S. C., Llopis J., Berggren P. O. Receptor-mediated Mn2+ influx in rat hepatocytes: comparison of cells loaded with Fura-2 ester and cells microinjected with Fura-2 salt. Biochem J. 1994 Aug 15;302(Pt 1):5–9. doi: 10.1042/bj3020005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kline D., Mehlmann L., Fox C., Terasaki M. The cortical endoplasmic reticulum (ER) of the mouse egg: localization of ER clusters in relation to the generation of repetitive calcium waves. Dev Biol. 1999 Nov 15;215(2):431–442. doi: 10.1006/dbio.1999.9445. [DOI] [PubMed] [Google Scholar]
- Lidofsky S. D., Sostman A., Fitz J. G. Regulation of cation-selective channels in liver cells. J Membr Biol. 1997 Jun 1;157(3):231–236. doi: 10.1007/s002329900231. [DOI] [PubMed] [Google Scholar]
- Mogami H., Tepikin A. V., Petersen O. H. Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. EMBO J. 1998 Jan 15;17(2):435–442. doi: 10.1093/emboj/17.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathanson M. H., Burgstahler A. D. Subcellular distribution of cytosolic Ca2+ in isolated rat hepatocyte couplets: evaluation using confocal microscopy. Cell Calcium. 1992 Feb;13(2):89–98. doi: 10.1016/0143-4160(92)90002-a. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Store depletion and calcium influx. Physiol Rev. 1997 Oct;77(4):901–930. doi: 10.1152/physrev.1997.77.4.901. [DOI] [PubMed] [Google Scholar]
- Patterson R. L., van Rossum D. B., Gill D. L. Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell. 1999 Aug 20;98(4):487–499. doi: 10.1016/s0092-8674(00)81977-7. [DOI] [PubMed] [Google Scholar]
- Ribeiro C. M., Reece J., Putney J. W., Jr Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J Biol Chem. 1997 Oct 17;272(42):26555–26561. doi: 10.1074/jbc.272.42.26555. [DOI] [PubMed] [Google Scholar]
- Roma M. G., Milkiewicz P., Elias E., Coleman R. Control by signaling modulators of the sorting of canalicular transporters in rat hepatocyte couplets: role of the cytoskeleton. Hepatology. 2000 Dec;32(6):1342–1356. doi: 10.1053/jhep.2000.20519. [DOI] [PubMed] [Google Scholar]
- Rosado J. A., Jenner S., Sage S. O. A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J Biol Chem. 2000 Mar 17;275(11):7527–7533. doi: 10.1074/jbc.275.11.7527. [DOI] [PubMed] [Google Scholar]
- Rosado J. A., Sage S. O. The actin cytoskeleton in store-mediated calcium entry. J Physiol. 2000 Jul 15;526(Pt 2):221–229. doi: 10.1111/j.1469-7793.2000.t01-2-00221.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rychkov G., Brereton H. M., Harland M. L., Barritt G. J. Plasma membrane Ca2+ release-activated Ca2+ channels with a high selectivity for Ca2+ identified by patch-clamp recording in rat liver cells. Hepatology. 2001 Apr;33(4):938–947. doi: 10.1053/jhep.2001.23051. [DOI] [PubMed] [Google Scholar]
- Samain E., Bouillier H., Perret C., Safar M., Dagher G. ANG II-induced Ca(2+) increase in smooth muscle cells from SHR is regulated by actin and microtubule networks. Am J Physiol. 1999 Aug;277(2 Pt 2):H834–H841. doi: 10.1152/ajpheart.1999.277.2.H834. [DOI] [PubMed] [Google Scholar]
- Sawamoto K., Takahashi N. Changes in the organelle arrangement in primary cultured hepatocytes following the formation of cytoskeleton. Int J Tissue React. 1995;17(5-6):205–210. [PubMed] [Google Scholar]
- Sedova M., Blatter L. A. Dynamic regulation of [Ca2+]i by plasma membrane Ca(2+)-ATPase and Na+/Ca2+ exchange during capacitative Ca2+ entry in bovine vascular endothelial cells. Cell Calcium. 1999 May;25(5):333–343. doi: 10.1054/ceca.1999.0036. [DOI] [PubMed] [Google Scholar]
- Sergeeva M., Ubl J. J., Reiser G. Disruption of actin cytoskeleton in cultured rat astrocytes suppresses ATP- and bradykinin-induced [Ca(2+)](i) oscillations by reducing the coupling efficiency between Ca(2+) release, capacitative Ca(2+) entry, and store refilling. Neuroscience. 2000;97(4):765–769. doi: 10.1016/s0306-4522(00)00062-2. [DOI] [PubMed] [Google Scholar]
- Stevenson B. R., Begg D. A. Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. J Cell Sci. 1994 Mar;107(Pt 3):367–375. doi: 10.1242/jcs.107.3.367. [DOI] [PubMed] [Google Scholar]
- Striggow F., Bohnensack R. Inositol 1,4,5-trisphosphate activates receptor-mediated calcium entry by two different pathways in hepatocytes. Eur J Biochem. 1994 May 15;222(1):229–234. doi: 10.1111/j.1432-1033.1994.tb18861.x. [DOI] [PubMed] [Google Scholar]
- Terasaki M., Chen L. B., Fujiwara K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol. 1986 Oct;103(4):1557–1568. doi: 10.1083/jcb.103.4.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terasaki M. Fluorescent labeling of endoplasmic reticulum. Methods Cell Biol. 1989;29:125–135. doi: 10.1016/s0091-679x(08)60191-0. [DOI] [PubMed] [Google Scholar]
- Thastrup O., Dawson A. P., Scharff O., Foder B., Cullen P. J., Drøbak B. K., Bjerrum P. J., Christensen S. B., Hanley M. R. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. 1989. Agents Actions. 1994 Dec;43(3-4):187–193. doi: 10.1007/BF01986687. [DOI] [PubMed] [Google Scholar]
- Tran D., Stelly N., Tordjmann T., Durroux T., Dufour M. N., Forchioni A., Seyer R., Claret M., Guillon G. Distribution of signaling molecules involved in vasopressin-induced Ca2+ mobilization in rat hepatocyte multiplets. J Histochem Cytochem. 1999 May;47(5):601–616. doi: 10.1177/002215549904700503. [DOI] [PubMed] [Google Scholar]
- Urbanik E., Ware B. R. Actin filament capping and cleaving activity of cytochalasins B, D, E, and H. Arch Biochem Biophys. 1989 Feb 15;269(1):181–187. doi: 10.1016/0003-9861(89)90098-2. [DOI] [PubMed] [Google Scholar]
- Wang Y. J., Gregory R. B., Barritt G. J. Regulation of F-actin and endoplasmic reticulum organization by the trimeric G-protein Gi2 in rat hepatocytes. Implication for the activation of store-operated Ca2+ inflow. J Biol Chem. 2000 Jul 21;275(29):22229–22237. doi: 10.1074/jbc.M001563200. [DOI] [PubMed] [Google Scholar]
- Woods N. M., Dixon C. J., Yasumoto T., Cuthbertson K. S., Cobbold P. H. Maitotoxin-induced free Ca changes in single rat hepatocytes. Cell Signal. 1999 Nov;11(11):805–811. doi: 10.1016/s0898-6568(99)00046-7. [DOI] [PubMed] [Google Scholar]
- Yamamoto N. S., Merkle C. J., Kraus-Friedmann N. Disruption of filamentous actin diminishes hormonally evoked Ca2+ responses in rat liver. Metabolism. 1999 Oct;48(10):1241–1247. doi: 10.1016/s0026-0495(99)90262-7. [DOI] [PubMed] [Google Scholar]