Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 1;363(Pt 1):183–188. doi: 10.1042/0264-6021:3630183

De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis.

Teresa Gómez del Pulgar 1, Guillermo Velasco 1, Cristina Sánchez 1, Amador Haro 1, Manuel Guzmán 1
PMCID: PMC1222465  PMID: 11903061

Abstract

Delta(9)-Tetrahydrocannabinol (THC) and other cannabinoids have been shown to induce apoptosis of glioma cells via ceramide generation. In the present study, we investigated the metabolic origin of the ceramide responsible for this cannabinoid-induced apoptosis by using two subclones of C6 glioma cells: C6.9, which is sensitive to THC-induced apoptosis; and C6.4, which is resistant to THC-induced apoptosis. Pharmacological inhibition of ceramide synthesis de novo, but not of neutral and acid sphingomyelinases, prevented THC-induced apoptosis in C6.9 cells. The activity of serine palmitoyltransferase (SPT), which catalyses the rate-limiting step of ceramide synthesis de novo, was remarkably enhanced by THC in C6.9 cells, but not in C6.4 cells. However, no major changes in SPT mRNA and protein levels were evident. Changes in SPT activity paralleled changes in ceramide levels. Pharmacological inhibition of ceramide synthesis de novo also prevented the stimulation of extracellular-signal-regulated kinase and the inhibition of protein kinase B triggered by cannabinoids. These findings show that de novo-synthesized ceramide is involved in cannabinoid-induced apoptosis of glioma cells.

Full Text

The Full Text of this article is available as a PDF (183.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bejaoui K., Wu C., Scheffler M. D., Haan G., Ashby P., Wu L., de Jong P., Brown R. H., Jr SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet. 2001 Mar;27(3):261–262. doi: 10.1038/85817. [DOI] [PubMed] [Google Scholar]
  2. Blázquez C., Galve-Roperh I., Guzmán M. De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. FASEB J. 2000 Nov;14(14):2315–2322. doi: 10.1096/fj.00-0122com. [DOI] [PubMed] [Google Scholar]
  3. Blázquez C., Geelen M. J., Velasco G., Guzmán M. The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett. 2001 Feb 2;489(2-3):149–153. doi: 10.1016/s0014-5793(01)02089-0. [DOI] [PubMed] [Google Scholar]
  4. Brann A. B., Scott R., Neuberger Y., Abulafia D., Boldin S., Fainzilber M., Futerman A. H. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J Neurosci. 1999 Oct 1;19(19):8199–8206. doi: 10.1523/JNEUROSCI.19-19-08199.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawkins J. L., Hulme D. J., Brahmbhatt S. B., Auer-Grumbach M., Nicholson G. A. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet. 2001 Mar;27(3):309–312. doi: 10.1038/85879. [DOI] [PubMed] [Google Scholar]
  6. De Petrocellis L., Melck D., Palmisano A., Bisogno T., Laezza C., Bifulco M., Di Marzo V. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8375–8380. doi: 10.1073/pnas.95.14.8375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Devane W. A., Hanus L., Breuer A., Pertwee R. G., Stevenson L. A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992 Dec 18;258(5090):1946–1949. doi: 10.1126/science.1470919. [DOI] [PubMed] [Google Scholar]
  8. Dickson R. C., Lester R. L., Nagiec M. M. Serine palmitoyltransferase. Methods Enzymol. 2000;311:3–9. doi: 10.1016/s0076-6879(00)11060-2. [DOI] [PubMed] [Google Scholar]
  9. Farrell A. M., Uchida Y., Nagiec M. M., Harris I. R., Dickson R. C., Elias P. M., Holleran W. M. UVB irradiation up-regulates serine palmitoyltransferase in cultured human keratinocytes. J Lipid Res. 1998 Oct;39(10):2031–2038. [PubMed] [Google Scholar]
  10. Felder C. C., Glass M. Cannabinoid receptors and their endogenous agonists. Annu Rev Pharmacol Toxicol. 1998;38:179–200. doi: 10.1146/annurev.pharmtox.38.1.179. [DOI] [PubMed] [Google Scholar]
  11. Galve-Roperh I., Sánchez C., Cortés M. L., Gómez del Pulgar T., Izquierdo M., Guzmán M. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med. 2000 Mar;6(3):313–319. doi: 10.1038/73171. [DOI] [PubMed] [Google Scholar]
  12. Galve-Roperh I., Sánchez C., Ségui B., Haro A., Díaz-Laviada I., Levade T. Evidence for the lack of involvement of sphingomyelin hydrolysis in the tumor necrosis factor-induced secretion of nerve growth factor in primary astrocyte cultures. J Neurochem. 1998 Aug;71(2):498–505. doi: 10.1046/j.1471-4159.1998.71020498.x. [DOI] [PubMed] [Google Scholar]
  13. Guzmán M., Galve-Roperh I., Sánchez C. Ceramide: a new second messenger of cannabinoid action. Trends Pharmacol Sci. 2001 Jan;22(1):19–22. doi: 10.1016/s0165-6147(00)01586-8. [DOI] [PubMed] [Google Scholar]
  14. Guzmán M., Sánchez C., Galve-Roperh I. Control of the cell survival/death decision by cannabinoids. J Mol Med (Berl) 2001;78(11):613–625. doi: 10.1007/s001090000177. [DOI] [PubMed] [Google Scholar]
  15. Gómez del Pulgar T., Velasco G., Guzmán M. The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J. 2000 Apr 15;347(Pt 2):369–373. doi: 10.1042/0264-6021:3470369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hanada K., Hara T., Fukasawa M., Yamaji A., Umeda M., Nishijima M. Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J Biol Chem. 1998 Dec 11;273(50):33787–33794. doi: 10.1074/jbc.273.50.33787. [DOI] [PubMed] [Google Scholar]
  17. Hanada K., Hara T., Nishijima M., Kuge O., Dickson R. C., Nagiec M. M. A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis. J Biol Chem. 1997 Dec 19;272(51):32108–32114. doi: 10.1074/jbc.272.51.32108. [DOI] [PubMed] [Google Scholar]
  18. Hanada K., Hara T., Nishijima M. Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J Biol Chem. 2000 Mar 24;275(12):8409–8415. doi: 10.1074/jbc.275.12.8409. [DOI] [PubMed] [Google Scholar]
  19. Hannun Y. A., Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000 Feb;10(2):73–80. doi: 10.1016/s0962-8924(99)01694-3. [DOI] [PubMed] [Google Scholar]
  20. Herget T., Esdar C., Oehrlein S. A., Heinrich M., Schütze S., Maelicke A., van Echten-Deckert G. Production of ceramides causes apoptosis during early neural differentiation in vitro. J Biol Chem. 2000 Sep 29;275(39):30344–30354. doi: 10.1074/jbc.M000714200. [DOI] [PubMed] [Google Scholar]
  21. Huwiler A., Kolter T., Pfeilschifter J., Sandhoff K. Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta. 2000 May 31;1485(2-3):63–99. doi: 10.1016/s1388-1981(00)00042-1. [DOI] [PubMed] [Google Scholar]
  22. Kolesnick R. N., Krönke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol. 1998;60:643–665. doi: 10.1146/annurev.physiol.60.1.643. [DOI] [PubMed] [Google Scholar]
  23. Lehtonen J. Y., Horiuchi M., Daviet L., Akishita M., Dzau V. J. Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Biol Chem. 1999 Jun 11;274(24):16901–16906. doi: 10.1074/jbc.274.24.16901. [DOI] [PubMed] [Google Scholar]
  24. Levade T., Jaffrézou J. P. Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta. 1999 Apr 19;1438(1):1–17. doi: 10.1016/s1388-1981(99)00038-4. [DOI] [PubMed] [Google Scholar]
  25. Liao W. C., Haimovitz-Friedman A., Persaud R. S., McLoughlin M., Ehleiter D., Zhang N., Gatei M., Lavin M., Kolesnick R., Fuks Z. Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J Biol Chem. 1999 Jun 18;274(25):17908–17917. doi: 10.1074/jbc.274.25.17908. [DOI] [PubMed] [Google Scholar]
  26. Maccarrone M., Lorenzon T., Bari M., Melino G., Finazzi-Agro A. Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J Biol Chem. 2000 Oct 13;275(41):31938–31945. doi: 10.1074/jbc.M005722200. [DOI] [PubMed] [Google Scholar]
  27. Matsuda L. A., Lolait S. J., Brownstein M. J., Young A. C., Bonner T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990 Aug 9;346(6284):561–564. doi: 10.1038/346561a0. [DOI] [PubMed] [Google Scholar]
  28. Mechoulam R., Ben-Shabat S., Hanus L., Ligumsky M., Kaminski N. E., Schatz A. R., Gopher A., Almog S., Martin B. R., Compton D. R. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995 Jun 29;50(1):83–90. doi: 10.1016/0006-2952(95)00109-d. [DOI] [PubMed] [Google Scholar]
  29. Munro S., Thomas K. L., Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993 Sep 2;365(6441):61–65. doi: 10.1038/365061a0. [DOI] [PubMed] [Google Scholar]
  30. Murray B., Alessandrini A., Cole A. J., Yee A. G., Furshpan E. J. Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11975–11980. doi: 10.1073/pnas.95.20.11975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Paumen M. B., Ishida Y., Muramatsu M., Yamamoto M., Honjo T. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem. 1997 Feb 7;272(6):3324–3329. doi: 10.1074/jbc.272.6.3324. [DOI] [PubMed] [Google Scholar]
  32. Perry D. K., Carton J., Shah A. K., Meredith F., Uhlinger D. J., Hannun Y. A. Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem. 2000 Mar 24;275(12):9078–9084. doi: 10.1074/jbc.275.12.9078. [DOI] [PubMed] [Google Scholar]
  33. Pertwee R. G. Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs. 2000 Jul;9(7):1553–1571. doi: 10.1517/13543784.9.7.1553. [DOI] [PubMed] [Google Scholar]
  34. Piomelli D., Giuffrida A., Calignano A., Rodríguez de Fonseca F. The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol Sci. 2000 Jun;21(6):218–224. doi: 10.1016/s0165-6147(00)01482-6. [DOI] [PubMed] [Google Scholar]
  35. Ruiz L., Miguel A., Díaz-Laviada I. Delta9-tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism. FEBS Lett. 1999 Sep 24;458(3):400–404. doi: 10.1016/s0014-5793(99)01073-x. [DOI] [PubMed] [Google Scholar]
  36. Rundén E., Seglen P. O., Haug F. M., Ottersen O. P., Wieloch T., Shamloo M., Laake J. H. Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism. J Neurosci. 1998 Sep 15;18(18):7296–7305. doi: 10.1523/JNEUROSCI.18-18-07296.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schubert K. M., Scheid M. P., Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem. 2000 May 5;275(18):13330–13335. doi: 10.1074/jbc.275.18.13330. [DOI] [PubMed] [Google Scholar]
  38. Shimabukuro M., Zhou Y. T., Levi M., Unger R. H. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2498–2502. doi: 10.1073/pnas.95.5.2498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sánchez C., Galve-Roperh I., Canova C., Brachet P., Guzmán M. Delta9-tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett. 1998 Sep 25;436(1):6–10. doi: 10.1016/s0014-5793(98)01085-0. [DOI] [PubMed] [Google Scholar]
  40. Sánchez C., Galve-Roperh I., Rueda D., Guzmán M. Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol. 1998 Nov;54(5):834–843. doi: 10.1124/mol.54.5.834. [DOI] [PubMed] [Google Scholar]
  41. Sánchez C., Rueda D., Ségui B., Galve-Roperh I., Levade T., Guzmán M. The CB(1) cannabinoid receptor of astrocytes is coupled to sphingomyelin hydrolysis through the adaptor protein fan. Mol Pharmacol. 2001 May;59(5):955–959. doi: 10.1124/mol.59.5.955. [DOI] [PubMed] [Google Scholar]
  42. Voth E. A., Schwartz R. H. Medicinal applications of delta-9-tetrahydrocannabinol and marijuana. Ann Intern Med. 1997 May 15;126(10):791–798. doi: 10.7326/0003-4819-126-10-199705150-00008. [DOI] [PubMed] [Google Scholar]
  43. Weiss B., Stoffel W. Human and murine serine-palmitoyl-CoA transferase--cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem. 1997 Oct 1;249(1):239–247. doi: 10.1111/j.1432-1033.1997.00239.x. [DOI] [PubMed] [Google Scholar]
  44. Xu J., Yeh C. H., Chen S., He L., Sensi S. L., Canzoniero L. M., Choi D. W., Hsu C. Y. Involvement of de novo ceramide biosynthesis in tumor necrosis factor-alpha/cycloheximide-induced cerebral endothelial cell death. J Biol Chem. 1998 Jun 26;273(26):16521–16526. doi: 10.1074/jbc.273.26.16521. [DOI] [PubMed] [Google Scholar]
  45. York R. D., Yao H., Dillon T., Ellig C. L., Eckert S. P., McCleskey E. W., Stork P. J. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature. 1998 Apr 9;392(6676):622–626. doi: 10.1038/33451. [DOI] [PubMed] [Google Scholar]
  46. Yuan J., Yankner B. A. Apoptosis in the nervous system. Nature. 2000 Oct 12;407(6805):802–809. doi: 10.1038/35037739. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES