Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 15;363(Pt 2):233–242. doi: 10.1042/0264-6021:3630233

Actopaxin is phosphorylated during mitosis and is a substrate for cyclin B1/cdc2 kinase.

Michael Curtis 1, Sotiris N Nikolopoulos 1, Christopher E Turner 1
PMCID: PMC1222471  PMID: 11931650

Abstract

Prior to cell division, normal adherent cells adopt a round morphology that is associated with a loss of actin stress fibres and disassembly of focal adhesions. In this study, we investigate the mitotic phosphorylation of the recently described paxillin and actin-binding focal-adhesion protein actopaxin [Nikolopoulos and Turner (2000) J. Cell Biol. 151, 1435-1448]. Actopaxin is comprised of an N-terminus containing six putative cdc2 phosphorylation sites and a C-terminus consisting of tandem calponin homology domains. Here we show that the N-terminus of actopaxin is phosphorylated by cyclin B1/cdc2 kinase in vitro and that this region of actopaxin precipitates cdc2 kinase activity from mitotic lysates. Actopaxin exhibits reduced electrophoretic mobility during mitosis that is dependent on phosphorylation within the first two consensus cdc2 phosphorylation sites. Finally, as cells progress from mitosis to G(1) there is an adhesion-independent dephosphorylation of actopaxin, suggesting that actopaxin dephosphorylation precedes cell spreading and the reformation of focal adhesions. Taken together, these results suggest a role for cyclin B1/cdc2-dependent phosphorylation of actopaxin in regulating actin cytoskeleton reorganization during cell division.

Full Text

The Full Text of this article is available as a PDF (397.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assoian R. K. Anchorage-dependent cell cycle progression. J Cell Biol. 1997 Jan 13;136(1):1–4. doi: 10.1083/jcb.136.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Assoian R. K., Schwartz M. A. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr Opin Genet Dev. 2001 Feb;11(1):48–53. doi: 10.1016/s0959-437x(00)00155-6. [DOI] [PubMed] [Google Scholar]
  3. Bañuelos S., Saraste M., Djinović Carugo K. Structural comparisons of calponin homology domains: implications for actin binding. Structure. 1998 Nov 15;6(11):1419–1431. doi: 10.1016/s0969-2126(98)00141-5. [DOI] [PubMed] [Google Scholar]
  4. Brown M. C., Curtis M. S., Turner C. E. Paxillin LD motifs may define a new family of protein recognition domains. Nat Struct Biol. 1998 Aug;5(8):677–678. doi: 10.1038/1370. [DOI] [PubMed] [Google Scholar]
  5. Brown M. C., Perrotta J. A., Turner C. E. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol. 1996 Nov;135(4):1109–1123. doi: 10.1083/jcb.135.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bubb M. R., Lenox R. H., Edison A. S. Phosphorylation-dependent conformational changes induce a switch in the actin-binding function of MARCKS. J Biol Chem. 1999 Dec 17;274(51):36472–36478. doi: 10.1074/jbc.274.51.36472. [DOI] [PubMed] [Google Scholar]
  7. Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463–518. doi: 10.1146/annurev.cellbio.12.1.463. [DOI] [PubMed] [Google Scholar]
  8. Critchley D. R. Focal adhesions - the cytoskeletal connection. Curr Opin Cell Biol. 2000 Feb;12(1):133–139. doi: 10.1016/s0955-0674(99)00067-8. [DOI] [PubMed] [Google Scholar]
  9. Davie J. R., Spencer V. A. Control of histone modifications. J Cell Biochem. 1999;Suppl 32-33:141–148. doi: 10.1002/(sici)1097-4644(1999)75:32+<141::aid-jcb17>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  10. Dedhar S., Williams B., Hannigan G. Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling. Trends Cell Biol. 1999 Aug;9(8):319–323. doi: 10.1016/s0962-8924(99)01612-8. [DOI] [PubMed] [Google Scholar]
  11. Dent P., Campbell D. G., Hubbard M. J., Cohen P. Multisite phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic AMP-dependent protein kinase and glycogen synthase kinase-3. FEBS Lett. 1989 May 8;248(1-2):67–72. doi: 10.1016/0014-5793(89)80433-8. [DOI] [PubMed] [Google Scholar]
  12. Garrison J. C., Wagner J. D. Glucagon and the Ca2+-linked hormones angiotensin II, norepinephrine, and vasopressin stimulate the phosphorylation of distinct substrates in intact hepatocytes. J Biol Chem. 1982 Nov 10;257(21):13135–13143. [PubMed] [Google Scholar]
  13. Goldman R. D., Chou Y. H., Prahlad V., Yoon M. Intermediate filaments: dynamic processes regulating their assembly, motility, and interactions with other cytoskeletal systems. FASEB J. 1999 Dec;13 (Suppl 2):S261–S265. doi: 10.1096/fasebj.13.9002.s261. [DOI] [PubMed] [Google Scholar]
  14. Hartwig J. H., Thelen M., Rosen A., Janmey P. A., Nairn A. C., Aderem A. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature. 1992 Apr 16;356(6370):618–622. doi: 10.1038/356618a0. [DOI] [PubMed] [Google Scholar]
  15. Hirota T., Morisaki T., Nishiyama Y., Marumoto T., Tada K., Hara T., Masuko N., Inagaki M., Hatakeyama K., Saya H. Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor. J Cell Biol. 2000 May 29;149(5):1073–1086. doi: 10.1083/jcb.149.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hollingsworth R. E., Jr, Hensey C. E., Lee W. H. Retinoblastoma protein and the cell cycle. Curr Opin Genet Dev. 1993 Feb;3(1):55–62. doi: 10.1016/s0959-437x(05)80341-7. [DOI] [PubMed] [Google Scholar]
  17. Hosoya N., Hosoya H., Yamashiro S., Mohri H., Matsumura F. Localization of caldesmon and its dephosphorylation during cell division. J Cell Biol. 1993 Jun;121(5):1075–1082. doi: 10.1083/jcb.121.5.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hulleman E., Boonstra J. Regulation of G1 phase progression by growth factors and the extracellular matrix. Cell Mol Life Sci. 2001 Jan;58(1):80–93. doi: 10.1007/PL00000780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jackman M. R., Pines J. N. Cyclins and the G2/M transition. Cancer Surv. 1997;29:47–73. [PubMed] [Google Scholar]
  20. Kishimoto T. Cell reproduction: induction of M-phase events by cyclin-dependent cdc2 kinase. Int J Dev Biol. 1994 Jun;38(2):185–191. [PubMed] [Google Scholar]
  21. Korenbaum E., Olski T. M., Noegel A. A. Genomic organization and expression profile of the parvin family of focal adhesion proteins in mice and humans. Gene. 2001 Nov 14;279(1):69–79. doi: 10.1016/s0378-1119(01)00743-0. [DOI] [PubMed] [Google Scholar]
  22. Lees J. A., Buchkovich K. J., Marshak D. R., Anderson C. W., Harlow E. The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J. 1991 Dec;10(13):4279–4290. doi: 10.1002/j.1460-2075.1991.tb05006.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lu P. J., Zhou X. Z., Shen M., Lu K. P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science. 1999 Feb 26;283(5406):1325–1328. doi: 10.1126/science.283.5406.1325. [DOI] [PubMed] [Google Scholar]
  24. Ma A., Richardson A., Schaefer E. M., Parsons J. T. Serine phosphorylation of focal adhesion kinase in interphase and mitosis: a possible role in modulating binding to p130(Cas). Mol Biol Cell. 2001 Jan;12(1):1–12. doi: 10.1091/mbc.12.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moreno S., Nurse P. Substrates for p34cdc2: in vivo veritas? Cell. 1990 May 18;61(4):549–551. doi: 10.1016/0092-8674(90)90463-o. [DOI] [PubMed] [Google Scholar]
  26. Morgan D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261–291. doi: 10.1146/annurev.cellbio.13.1.261. [DOI] [PubMed] [Google Scholar]
  27. Nigg E. A., Blangy A., Lane H. A. Dynamic changes in nuclear architecture during mitosis: on the role of protein phosphorylation in spindle assembly and chromosome segregation. Exp Cell Res. 1996 Dec 15;229(2):174–180. doi: 10.1006/excr.1996.0356. [DOI] [PubMed] [Google Scholar]
  28. Nikolopoulos S. N., Turner C. E. Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion. J Cell Biol. 2000 Dec 25;151(7):1435–1448. doi: 10.1083/jcb.151.7.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nikolopoulos Sotiris N., Turner Christopher E. Molecular dissection of actopaxin-integrin-linked kinase-Paxillin interactions and their role in subcellular localization. J Biol Chem. 2001 Nov 1;277(2):1568–1575. doi: 10.1074/jbc.M108612200. [DOI] [PubMed] [Google Scholar]
  30. Olski T. M., Noegel A. A., Korenbaum E. Parvin, a 42 kDa focal adhesion protein, related to the alpha-actinin superfamily. J Cell Sci. 2001 Feb;114(Pt 3):525–538. doi: 10.1242/jcs.114.3.525. [DOI] [PubMed] [Google Scholar]
  31. Pearson R. B., Kemp B. E. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 1991;200:62–81. doi: 10.1016/0076-6879(91)00127-i. [DOI] [PubMed] [Google Scholar]
  32. Pines J. Four-dimensional control of the cell cycle. Nat Cell Biol. 1999 Jul;1(3):E73–E79. doi: 10.1038/11041. [DOI] [PubMed] [Google Scholar]
  33. Schwartz M. A., Schaller M. D., Ginsberg M. H. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 1995;11:549–599. doi: 10.1146/annurev.cb.11.110195.003001. [DOI] [PubMed] [Google Scholar]
  34. Steinberg R. A., Coffino P. Two-dimensional gel analysis of cyclic AMP effects in cultured S49 mouse lymphoma cells: protein modifications, inductions and repressions. Cell. 1979 Nov;18(3):719–733. doi: 10.1016/0092-8674(79)90126-0. [DOI] [PubMed] [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tu Y., Huang Y., Zhang Y., Hua Y., Wu C. A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading. J Cell Biol. 2001 Apr 30;153(3):585–598. doi: 10.1083/jcb.153.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Turner C. E., Glenney J. R., Jr, Burridge K. Paxillin: a new vinculin-binding protein present in focal adhesions. J Cell Biol. 1990 Sep;111(3):1059–1068. doi: 10.1083/jcb.111.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wood C. K., Turner C. E., Jackson P., Critchley D. R. Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin. J Cell Sci. 1994 Feb;107(Pt 2):709–717. [PubMed] [Google Scholar]
  39. Yaffe M. B., Elia A. E. Phosphoserine/threonine-binding domains. Curr Opin Cell Biol. 2001 Apr;13(2):131–138. doi: 10.1016/s0955-0674(00)00189-7. [DOI] [PubMed] [Google Scholar]
  40. Yamaguchi R., Mazaki Y., Hirota K., Hashimoto S., Sabe H. Mitosis specific serine phosphorylation and downregulation of one of the focal adhesion protein, paxillin. Oncogene. 1997 Oct 9;15(15):1753–1761. doi: 10.1038/sj.onc.1201345. [DOI] [PubMed] [Google Scholar]
  41. Yamaji S., Suzuki A., Sugiyama Y., Koide Y., Yoshida M., Kanamori H., Mohri H., Ohno S., Ishigatsubo Y. A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell-substrate interaction. J Cell Biol. 2001 Jun 11;153(6):1251–1264. doi: 10.1083/jcb.153.6.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamakita Y., Totsukawa G., Yamashiro S., Fry D., Zhang X., Hanks S. K., Matsumura F. Dissociation of FAK/p130(CAS)/c-Src complex during mitosis: role of mitosis-specific serine phosphorylation of FAK. J Cell Biol. 1999 Jan 25;144(2):315–324. doi: 10.1083/jcb.144.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yamashiro S., Chern H., Yamakita Y., Matsumura F. Mutant Caldesmon lacking cdc2 phosphorylation sites delays M-phase entry and inhibits cytokinesis. Mol Biol Cell. 2001 Jan;12(1):239–250. doi: 10.1091/mbc.12.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yamashiro S., Yamakita Y., Hosoya H., Matsumura F. Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. Nature. 1991 Jan 10;349(6305):169–172. doi: 10.1038/349169a0. [DOI] [PubMed] [Google Scholar]
  45. Yamashiro S., Yamakita Y., Ishikawa R., Matsumura F. Mitosis-specific phosphorylation causes 83K non-muscle caldesmon to dissociate from microfilaments. Nature. 1990 Apr 12;344(6267):675–678. doi: 10.1038/344675a0. [DOI] [PubMed] [Google Scholar]
  46. van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates. Electrophoresis. 1994 Mar-Apr;15(3-4):544–554. doi: 10.1002/elps.1150150173. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES