Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 15;363(Pt 2):243–252. doi: 10.1042/0264-6021:3630243

Molecular dissection of membrane-transport proteins: mass spectrometry and sequence determination of the galactose-H+ symport protein, GalP, of Escherichia coli and quantitative assay of the incorporation of [ring-2-13C]histidine and (15)NH(3).

Henrietta Venter 1, Alison E Ashcroft 1, Jeffrey N Keen 1, Peter J F Henderson 1, Richard B Herbert 1
PMCID: PMC1222472  PMID: 11931651

Abstract

The molecular mass of the galactose-H(+) symport protein GalP, as its histidine-tagged derivative GalP(His)(6), has been determined by electrospray MS (ESI-MS) with an error of <0.02%. One methionine residue, predicted to be present from the DNA sequence, was deduced to be absent. This is a significant advance on the estimation of the molecular masses of membrane-transport proteins by SDS/PAGE, where there is a consistent under-estimation of the true molecular mass due to anomalous electrophoretic migration. Addition of a size-exclusion chromatography step after Ni(2+)-nitrilotriacetate affinity purification was essential to obtain GalP(His)(6) suitable for ESI-MS. Controlled trypsin, trypsin+chymotrypsin and CNBr digestion of the protein yielded peptide fragments suitable for ESI-MS and tandem MS analysis, and accurate mass determination of the derived fragments resulted in identification of 82% of the GalP(His)(6) protein. Tandem MS analysis of selected peptides then afforded 49% of the actual amino acid sequence of the protein; the absence of the N-terminal methionine was confirmed. Matrix-assisted laser-desorption ionization MS allowed identification of one peptide that was not detected by ESI-MS. All the protein/peptide mass and sequence determinations were in accord with the predictions of amino acid sequence deduced from the DNA sequence of the galP gene. [ring-2-(13)C]Histidine was incorporated into GalP(His)(6) in vivo, and ESI-MS analysis enabled the measurement of a high (80%) and specific incorporation of label into the histidine residues in the protein. MS could also be used to confirm the labelling of the protein by (15)NH(3) (93% enrichment) and [(19)F]tryptophan (83% enrichment). Such MS measurements will serve in the future analysis of the structures of membrane-transport proteins by NMR, and of their topology by indirect techniques.

Full Text

The Full Text of this article is available as a PDF (241.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleyard A. N., Herbert R. B., Henderson P. J., Watts A., Spooner P. J. Selective NMR observation of inhibitor and sugar binding to the galactose-H(+) symport protein GalP, of Escherichia coli. Biochim Biophys Acta. 2000 Dec 20;1509(1-2):55–64. doi: 10.1016/s0304-4157(00)00017-4. [DOI] [PubMed] [Google Scholar]
  2. Cadene M., Chait B. T. A robust, detergent-friendly method for mass spectrometric analysis of integral membrane proteins. Anal Chem. 2000 Nov 15;72(22):5655–5658. doi: 10.1021/ac000811l. [DOI] [PubMed] [Google Scholar]
  3. Cairns M. T., McDonald T. P., Horne P., Henderson P. J., Baldwin S. A. Cytochalasin B as a probe of protein structure and substrate recognition by the galactose/H+ transporter of Escherichia coli. J Biol Chem. 1991 May 5;266(13):8176–8183. [PubMed] [Google Scholar]
  4. Griffiths W. J., Jonsson A. P., Liu S., Rai D. K., Wang Y. Electrospray and tandem mass spectrometry in biochemistry. Biochem J. 2001 May 1;355(Pt 3):545–561. doi: 10.1042/bj3550545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hadden J. M., Convery M. A., Déclais A. C., Lilley D. M., Phillips S. E. Crystal structure of the Holliday junction resolving enzyme T7 endonuclease I. Nat Struct Biol. 2001 Jan;8(1):62–67. doi: 10.1038/83067. [DOI] [PubMed] [Google Scholar]
  6. Henderson P. J., Giddens R. A., Jones-Mortimer M. C. Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem J. 1977 Feb 15;162(2):309–320. doi: 10.1042/bj1620309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henderson P. J. The 12-transmembrane helix transporters. Curr Opin Cell Biol. 1993 Aug;5(4):708–721. doi: 10.1016/0955-0674(93)90144-f. [DOI] [PubMed] [Google Scholar]
  8. Hufnagel P., Schweiger U., Eckerskorn C., Oesterhelt D. Electrospray ionization mass spectrometry of genetically and chemically modified bacteriorhodopsins. Anal Biochem. 1996 Dec 1;243(1):46–54. doi: 10.1006/abio.1996.0480. [DOI] [PubMed] [Google Scholar]
  9. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001 Jan 19;305(3):567–580. doi: 10.1006/jmbi.2000.4315. [DOI] [PubMed] [Google Scholar]
  10. Lee T. D., Shively J. E. Enzymatic and chemical digestion of proteins for mass spectrometry. Methods Enzymol. 1990;193:361–374. doi: 10.1016/0076-6879(90)93427-m. [DOI] [PubMed] [Google Scholar]
  11. Maiden M. C., Davis E. O., Baldwin S. A., Moore D. C., Henderson P. J. Mammalian and bacterial sugar transport proteins are homologous. Nature. 1987 Feb 12;325(6105):641–643. doi: 10.1038/325641a0. [DOI] [PubMed] [Google Scholar]
  12. Martin G. E., Seamon K. B., Brown F. M., Shanahan M. F., Roberts P. E., Henderson P. J. Forskolin specifically inhibits the bacterial galactose-H+ transport protein, GalP. J Biol Chem. 1994 Oct 7;269(40):24870–24877. [PubMed] [Google Scholar]
  13. McDonald T. P., Henderson P. J. Cysteine residues in the D-galactose-H+ symport protein of Escherichia coli: effects of mutagenesis on transport, reaction with N-ethylmaleimide and antibiotic binding. Biochem J. 2001 Feb 1;353(Pt 3):709–717. doi: 10.1042/0264-6021:3530709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McDonald T. P., Walmsley A. R., Henderson P. J. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar. J Biol Chem. 1997 Jun 13;272(24):15189–15199. doi: 10.1074/jbc.272.24.15189. [DOI] [PubMed] [Google Scholar]
  15. McDonald T. P., Walmsley A. R., Martin G. E., Henderson P. J. The role of tryptophans 371 and 395 in the binding of antibiotics and the transport of sugars by the D-galactose-H+ symport protein (GalP) from Escherichia coli. J Biol Chem. 1995 Dec 22;270(51):30359–30370. doi: 10.1074/jbc.270.51.30359. [DOI] [PubMed] [Google Scholar]
  16. Paulsen I. T., Chen J., Nelson K. E., Saier M. H., Jr Comparative genomics of microbial drug efflux systems. J Mol Microbiol Biotechnol. 2001 Apr;3(2):145–150. [PubMed] [Google Scholar]
  17. Roepstorff P., Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984 Nov;11(11):601–601. doi: 10.1002/bms.1200111109. [DOI] [PubMed] [Google Scholar]
  18. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  19. Spooner P. J., O'Reilly W. J., Homans S. W., Rutherford N. G., Henderson P. J., Watts A. Weak substrate binding to transport proteins studied by NMR. Biophys J. 1998 Dec;75(6):2794–2800. doi: 10.1016/S0006-3495(98)77722-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spooner P. J., Rutherford N. G., Watts A., Henderson P. J. NMR observation of substrate in the binding site of an active sugar-H+ symport protein in native membranes. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3877–3881. doi: 10.1073/pnas.91.9.3877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WITKOP B. Nonenzymatic methods for the preferential and selective cleavage and modification of proteins. Adv Protein Chem. 1961;16:221–321. doi: 10.1016/s0065-3233(08)60031-5. [DOI] [PubMed] [Google Scholar]
  22. Ward A., O'Reilly J., Rutherford N. G., Ferguson S. M., Hoyle C. K., Palmer S. L., Clough J. L., Venter H., Xie H., Litherland G. J. Expression of prokaryotic membrane transport proteins in Escherichia coli. Biochem Soc Trans. 1999 Dec;27(6):893–899. doi: 10.1042/bst0270893. [DOI] [PubMed] [Google Scholar]
  23. Watts A., Ulrich A. S., Middleton D. A. Membrane protein structure: the contribution and potential of novel solid state NMR approaches. Mol Membr Biol. 1995 Jul-Sep;12(3):233–246. doi: 10.3109/09687689509072423. [DOI] [PubMed] [Google Scholar]
  24. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  25. Whitelegge J. P., Gundersen C. B., Faull K. F. Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins. Protein Sci. 1998 Jun;7(6):1423–1430. doi: 10.1002/pro.5560070619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Whitelegge J. P., Jewess P., Pickering M. G., Gerrish C., Camilleri P., Bowyer J. R. Sequence analysis of photoaffinity-labelled peptides derived by proteolysis of photosystem-2 reaction centres from thylakoid membranes treated with [14C]azidoatrazine. Eur J Biochem. 1992 Aug 1;207(3):1077–1084. doi: 10.1111/j.1432-1033.1992.tb17144.x. [DOI] [PubMed] [Google Scholar]
  27. Whitelegge J. P., le Coutre J., Lee J. C., Engel C. K., Privé G. G., Faull K. F., Kaback H. R. Toward the bilayer proteome, electrospray ionization-mass spectrometry of large, intact transmembrane proteins. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10695–10698. doi: 10.1073/pnas.96.19.10695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Williams K. A. Three-dimensional structure of the ion-coupled transport protein NhaA. Nature. 2000 Jan 6;403(6765):112–115. doi: 10.1038/47534. [DOI] [PubMed] [Google Scholar]
  29. Yin C. C., Aldema-Ramos M. L., Borges-Walmsley M. I., Taylor R. W., Walmsley A. R., Levy S. B., Bullough P. A. The quarternary molecular architecture of TetA, a secondary tetracycline transporter from Escherichia coli. Mol Microbiol. 2000 Nov;38(3):482–492. doi: 10.1046/j.1365-2958.2000.02149.x. [DOI] [PubMed] [Google Scholar]
  30. Zhang X., Dillen L., Vanhoutte K., Van Dongen W., Esmans E., Claeys M. Characterization of unstable intermediates and oxidized products formed during cyanogen bromide cleavage of peptides and proteins by electrospray mass spectrometry. Anal Chem. 1996 Oct 1;68(19):3422–3430. doi: 10.1021/ac9602229. [DOI] [PubMed] [Google Scholar]
  31. Zhuang J., Privé G. G., Werner G. E., Ringler P., Kaback H. R., Engel A. Two-dimensional crystallization of Escherichia coli lactose permease. J Struct Biol. 1999 Mar;125(1):63–75. doi: 10.1006/jsbi.1998.4059. [DOI] [PubMed] [Google Scholar]
  32. le Coutre J., Whitelegge J. P., Gross A., Turk E., Wright E. M., Kaback H. R., Faull K. F. Proteomics on full-length membrane proteins using mass spectrometry. Biochemistry. 2000 Apr 18;39(15):4237–4242. doi: 10.1021/bi000150m. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES