Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 15;363(Pt 2):281–288. doi: 10.1042/0264-6021:3630281

Identification of protein-derived tyrosyl radical in the reaction of cytochrome c and hydrogen peroxide: characterization by ESR spin-trapping, HPLC and MS.

Steven Yue Qian 1, Yeong-Renn Chen 1, Leesa J Deterding 1, Yang C Fann 1, Colin F Chignell 1, Kenneth B Tomer 1, Ronald P Mason 1
PMCID: PMC1222476  PMID: 11931655

Abstract

The reaction of cytochrome c and H(2)O(2) is known to form a protein-centred radical that can be detected with the spin trap 2-methyl-2-nitrosopropane (MNP). To characterize the MNP/tyrosyl adduct structure that had previously been determined incorrectly [Barr, Gunther, Deterding, Tomer and Mason (1996) J. Biol. Chem. 271, 15498-15503], we eliminated unreasonable structure models by ESR studies with a series of (13)C-labelled tyrosines, and photochemically synthesized an authentic MNP/tyrosyl adduct that has its trapping site on the C-3 position of the tyrosine phenyl ring. The observation of the identical ESR spectra for this radical adduct from the UV irradiation of 3-iodo-tyrosine and the adduct from the cytochrome c reaction demonstrated that the radical trapping site of MNP/tyrosyl is located on the equivalent C-3/C-5 positions instead of the C-1 position, as was proposed by Barr et al. In an on-line HPLC/ESR system, an identical retention time (17.7 min) was observed for the ESR-active HPLC peak of the MNP/tyrosyl adduct from the following three reactions: (i) the tyrosine oxidation via horseradish peroxidase/H(2)O(2); (ii) UV irradiation of 3-iodo-tyrosine and (iii) the reaction of cytochrome c with H(2)O(2). This result demonstrated that the radical adducts of all three reactions are most probably the same. The mass spectrometric analysis of the HPLC fractions from reactions (i) and (ii) showed an ion at m/z 267 attributed to the MNP/tyrosyl adduct. We conclude that the cytochrome c-derived tyrosyl radical was trapped by MNP, leading to a persistent radical adduct at the C-3/C-5 positions of the tyrosine phenyl ring.

Full Text

The Full Text of this article is available as a PDF (184.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr D. P., Gunther M. R., Deterding L. J., Tomer K. B., Mason R. P. ESR spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide. J Biol Chem. 1996 Jun 28;271(26):15498–15503. doi: 10.1074/jbc.271.26.15498. [DOI] [PubMed] [Google Scholar]
  2. Borchers C., Parker C. E., Deterding L. J., Tomer K. B. Preliminary comparison of precursor scans and liquid chromatography-tandem mass spectrometry on a hybrid quadrupole time-of-flight mass spectrometer. J Chromatogr A. 1999 Aug 27;854(1-2):119–130. doi: 10.1016/s0021-9673(99)00479-3. [DOI] [PubMed] [Google Scholar]
  3. Bose-Basu B., DeRose E. F., Chen Y. R., Mason R. P., London R. E. Protein NMR spin trapping with [methyl-13C(3)]-MNP: application to the tyrosyl radical of equine myoglobin. Free Radic Biol Med. 2001 Aug 1;31(3):383–390. doi: 10.1016/s0891-5849(01)00599-8. [DOI] [PubMed] [Google Scholar]
  4. Boveris A., Cadenas E., Stoppani A. O. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J. 1976 May 15;156(2):435–444. doi: 10.1042/bj1560435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chignell C. F., Sik R. H. Spectroscopic studies of cutaneous photosensitizing agents--XIV. The spin trapping of free radicals formed during the photolysis of halogenated salicylanilide antibacterial agents. Photochem Photobiol. 1989 Sep;50(3):287–295. doi: 10.1111/j.1751-1097.1989.tb04162.x. [DOI] [PubMed] [Google Scholar]
  8. Darley-Usmar V., Halliwell B. Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res. 1996 May;13(5):649–662. doi: 10.1023/a:1016079012214. [DOI] [PubMed] [Google Scholar]
  9. Deterding L. J., Moseley M. A., Tomer K. B., Jorgenson J. W. Coaxial continuous flow fast atom bombardment in conjunction with tandem mass spectrometry for the analysis of biomolecules. Anal Chem. 1989 Nov 15;61(22):2504–2511. doi: 10.1021/ac00197a011. [DOI] [PubMed] [Google Scholar]
  10. Duling D. R. Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B. 1994 Jun;104(2):105–110. doi: 10.1006/jmrb.1994.1062. [DOI] [PubMed] [Google Scholar]
  11. Gunther M. R., Tschirret-Guth R. A., Witkowska H. E., Fann Y. C., Barr D. P., Ortiz De Montellano P. R., Mason R. P. Site-specific spin trapping of tyrosine radicals in the oxidation of metmyoglobin by hydrogen peroxide. Biochem J. 1998 Mar 15;330(Pt 3):1293–1299. doi: 10.1042/bj3301293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iwahashi H., Albro P. W., McGown S. R., Tomer K. B., Mason R. P. Isolation and identification of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts formed by the decomposition of the hydroperoxides of linoleic acid, linolenic acid, and arachidonic acid by soybean lipoxygenase. Arch Biochem Biophys. 1991 Feb 15;285(1):172–180. doi: 10.1016/0003-9861(91)90346-k. [DOI] [PubMed] [Google Scholar]
  13. Iwahashi H., Deterding L. J., Parker C. E., Mason R. P., Tomer K. B. Identification of radical adducts formed in the reactions of unsaturated fatty acids with soybean lipoxygenase using continuous flow fast atom bombardment with tandem mass spectrometry. Free Radic Res. 1996 Sep;25(3):255–274. doi: 10.3109/10715769609149051. [DOI] [PubMed] [Google Scholar]
  14. Iwahashi H., Ikeda A., Negoro Y., Kido R. Detection of radical species in haematin-catalysed retinoic acid 5,6-epoxidation by using h.p.l.c.-e.p.r. spectrometry. Biochem J. 1986 Jun 1;236(2):509–514. doi: 10.1042/bj2360509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iwahashi H., Parker C. E., Mason R. P., Tomer K. B. Combined liquid chromatography/electron paramagnetic resonance spectrometry/electrospray ionization mass spectrometry for radical identification. Anal Chem. 1992 Oct 1;64(19):2244–2252. doi: 10.1021/ac00043a011. [DOI] [PubMed] [Google Scholar]
  16. Iwahashi H., Parker C. E., Mason R. P., Tomer K. B. Radical adducts of nitrosobenzene and 2-methyl-2-nitrosopropane with 12,13-epoxylinoleic acid radical, 12,13-epoxylinolenic acid radical and 14,15-epoxyarachidonic acid radical. Identification by h.p.l.c.-e.p.r. and liquid chromatography-thermospray-m.s. Biochem J. 1991 Jun 1;276(Pt 2):447–453. doi: 10.1042/bj2760447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iwahashi H., Parker C. E., Tomer K. B., Mason R. P. Detection of the ethyl- and pentyl-radical adducts of alpha-(4-pyridyl-1- oxide)-N-tert-butylnitrone in rat-liver microsomes treated with ADP, NADPH and ferric chloride. Free Radic Res Commun. 1992;16(5):295–301. doi: 10.3109/10715769209049182. [DOI] [PubMed] [Google Scholar]
  18. Kinnula V. L., Pietarinen-Runtti P., Raivio K., Kahlos K., Pelin K., Mattson K., Linnainmaa K. Manganese superoxide dismutase in human pleural mesothelioma cell lines. Free Radic Biol Med. 1996;21(4):527–532. doi: 10.1016/0891-5849(96)00049-4. [DOI] [PubMed] [Google Scholar]
  19. Li J. J., Oberley L. W., St Clair D. K., Ridnour L. A., Oberley T. D. Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene. 1995 May 18;10(10):1989–2000. [PubMed] [Google Scholar]
  20. Maiorino M., Ursini F., Cadenas E. Reactivity of metmyoglobin towards phospholipid hydroperoxides. Free Radic Biol Med. 1994 May;16(5):661–667. doi: 10.1016/0891-5849(94)90067-1. [DOI] [PubMed] [Google Scholar]
  21. McCormick M. L., Gaut J. P., Lin T. S., Britigan B. E., Buettner G. R., Heinecke J. W. Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase. J Biol Chem. 1998 Nov 27;273(48):32030–32037. doi: 10.1074/jbc.273.48.32030. [DOI] [PubMed] [Google Scholar]
  22. Radi R., Bush K. M., Freeman B. A. The role of cytochrome c and mitochondrial catalase in hydroperoxide-induced heart mitochondrial lipid peroxidation. Arch Biochem Biophys. 1993 Jan;300(1):409–415. doi: 10.1006/abbi.1993.1055. [DOI] [PubMed] [Google Scholar]
  23. Radi R., Sims S., Cassina A., Turrens J. F. Roles of catalase and cytochrome c in hydroperoxide-dependent lipid peroxidation and chemiluminescence in rat heart and kidney mitochondria. Free Radic Biol Med. 1993 Dec;15(6):653–659. doi: 10.1016/0891-5849(93)90169-u. [DOI] [PubMed] [Google Scholar]
  24. Radi R., Thomson L., Rubbo H., Prodanov E. Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Arch Biochem Biophys. 1991 Jul;288(1):112–117. doi: 10.1016/0003-9861(91)90171-e. [DOI] [PubMed] [Google Scholar]
  25. Radi R., Turrens J. F., Freeman B. A. Cytochrome c-catalyzed membrane lipid peroxidation by hydrogen peroxide. Arch Biochem Biophys. 1991 Jul;288(1):118–125. doi: 10.1016/0003-9861(91)90172-f. [DOI] [PubMed] [Google Scholar]
  26. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sun Y., Oberley L. W., Oberley T. D., Elwell J. H., Sierra-Rivera E. Lowered antioxidant enzymes in spontaneously transformed embryonic mouse liver cells in culture. Carcinogenesis. 1993 Jul;14(7):1457–1463. doi: 10.1093/carcin/14.7.1457. [DOI] [PubMed] [Google Scholar]
  28. Turrens J. F., Alexandre A., Lehninger A. L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985 Mar;237(2):408–414. doi: 10.1016/0003-9861(85)90293-0. [DOI] [PubMed] [Google Scholar]
  29. Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980 Nov 1;191(2):421–427. doi: 10.1042/bj1910421. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES