Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 15;363(Pt 2):297–303. doi: 10.1042/0264-6021:3630297

Cloning and expression of two novel pig liver and kidney fatty acid hydroxylases [cytochrome P450 (CYP)4A24 and CYP4A25].

Kerstin Lundell 1
PMCID: PMC1222478  PMID: 11931657

Abstract

A new member of the cytochrome P450 (CYP) 4A subfamily (CYP4A21) was recently cloned by PCR from pig liver [Lundell, Hansson, and Wikvall (2001) J. Biol. Chem. 276, 9606-9612]. This enzyme does not catalyse omega- or (omega-1)-hydroxylation of lauric acid, the model substrate for CYP4A enzymes. Instead, CYP4A21 participates in bile acid biosynthesis in the pig. Extensive studies, primarily conducted to verify the aberrant amino acids found in CYP4A21 within a normally conserved CYP4A motif, revealed that besides CYP4A21 two additional sequences were co-amplified by PCR. These two sequences (designated CYP4A24 and CYP4A25), generated from both pig liver and kidney, were characterized by restriction-enzyme analysis and were subsequently cloned. The deduced amino acid sequences of CYP4A24 and CYP4A25 share extensive sequence identity (97%). Both enzymes, expressed in yeast cells, exhibit omega-and (omega-1)-hydroxylase activities towards lauric acid and palmitic acid. The positions of the variable regions between CYP4A24 and CYP4A25, which are confined to beta-sheets 1 and 4, indicate a possible difference in substrate specificity or regioselectivity. The porcine CYP4A21, CYP4A24 and CYP4A25 enzymes, with an overall identity of 94%, have probably evolved from a common ancestral gene, perhaps in conjunction with species-specific habits.

Full Text

The Full Text of this article is available as a PDF (229.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amet Y., Berthou F., Baird S., Dreano Y., Bail J. P., Menez J. F. Validation of the (omega-1)-hydroxylation of lauric acid as an in vitro substrate probe for human liver CYP2E1. Biochem Pharmacol. 1995 Nov 27;50(11):1775–1782. doi: 10.1016/0006-2952(95)02040-3. [DOI] [PubMed] [Google Scholar]
  2. Araya Z., Hellman U., Hansson R. Characterisation of taurochenodeoxycholic acid 6 alpha-hydroxylase from pig liver microsomes. Eur J Biochem. 1995 Aug 1;231(3):855–861. doi: 10.1111/j.1432-1033.1995.0855d.x. [DOI] [PubMed] [Google Scholar]
  3. Chang Y. T., Loew G. H. Homology modeling and substrate binding study of human CYP4A11 enzyme. Proteins. 1999 Feb 15;34(3):403–415. [PubMed] [Google Scholar]
  4. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Degtyarenko K. N., Archakov A. I. Molecular evolution of P450 superfamily and P450-containing monooxygenase systems. FEBS Lett. 1993 Oct 11;332(1-2):1–8. doi: 10.1016/0014-5793(93)80470-f. [DOI] [PubMed] [Google Scholar]
  6. Fukuda T., Imai Y., Komori M., Nakamura M., Kusunose E., Satouchi K., Kusunose M. Different mechanisms of regioselection of fatty acid hydroxylation by laurate (omega-1)-hydroxylating P450s, P450 2C2 and P450 2E1. J Biochem. 1994 Feb;115(2):338–344. doi: 10.1093/oxfordjournals.jbchem.a124339. [DOI] [PubMed] [Google Scholar]
  7. Gasser R., Philpot R. M. Primary structures of cytochrome P-450 isozyme 5 from rabbit and rat and regulation of species-dependent expression and induction in lung and liver: identification of cytochrome P-450 gene subfamily IVB. Mol Pharmacol. 1989 May;35(5):617–625. [PubMed] [Google Scholar]
  8. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham S. E., Peterson J. A. How similar are P450s and what can their differences teach us? Arch Biochem Biophys. 1999 Sep 1;369(1):24–29. doi: 10.1006/abbi.1999.1350. [DOI] [PubMed] [Google Scholar]
  10. Hardwick J. P., Song B. J., Huberman E., Gonzalez F. J. Isolation, complementary DNA sequence, and regulation of rat hepatic lauric acid omega-hydroxylase (cytochrome P-450LA omega). Identification of a new cytochrome P-450 gene family. J Biol Chem. 1987 Jan 15;262(2):801–810. [PubMed] [Google Scholar]
  11. Hoch U., Falck J. R., de Montellano P. R. Molecular basis for the omega-regiospecificity of the CYP4A2 and CYP4A3 fatty acid hydroxylases. J Biol Chem. 2000 Sep 1;275(35):26952–26958. doi: 10.1074/jbc.M004841200. [DOI] [PubMed] [Google Scholar]
  12. Johnson E. F., Palmer C. N., Griffin K. J., Hsu M. H. Role of the peroxisome proliferator-activated receptor in cytochrome P450 4A gene regulation. FASEB J. 1996 Sep;10(11):1241–1248. doi: 10.1096/fasebj.10.11.8836037. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lundell K., Hansson R., Wikvall K. Cloning and expression of a pig liver taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21): a novel member of the CYP4A subfamily. J Biol Chem. 2000 Dec 11;276(13):9606–9612. doi: 10.1074/jbc.M006584200. [DOI] [PubMed] [Google Scholar]
  16. Nebert D. W., Nelson D. R., Coon M. J., Estabrook R. W., Feyereisen R., Fujii-Kuriyama Y., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991 Jan-Feb;10(1):1–14. doi: 10.1089/dna.1991.10.1. [DOI] [PubMed] [Google Scholar]
  17. Nelson D. R., Koymans L., Kamataki T., Stegeman J. J., Feyereisen R., Waxman D. J., Waterman M. R., Gotoh O., Coon M. J., Estabrook R. W. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996 Feb;6(1):1–42. doi: 10.1097/00008571-199602000-00002. [DOI] [PubMed] [Google Scholar]
  18. Okita R. T., Clark J. E., Okita J. R., Masters B. S. Omega- and (omega-1)-hydroxylation of eicosanoids and fatty acids by high-performance liquid chromatography. Methods Enzymol. 1991;206:432–441. doi: 10.1016/0076-6879(91)06112-g. [DOI] [PubMed] [Google Scholar]
  19. Okita R. T., Parkhill L. K., Yasukochi Y., Masters B. S., Theoharides A. D., Kupfer D. The omega- and (omega-1)-hydroxylase activities of prostaglandins A1 and E1 and lauric acid by pig kidney microsomes and a purified kidney cytochrome P-450. J Biol Chem. 1981 Jun 25;256(12):5961–5964. [PubMed] [Google Scholar]
  20. Pompon D., Louerat B., Bronine A., Urban P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol. 1996;272:51–64. doi: 10.1016/s0076-6879(96)72008-6. [DOI] [PubMed] [Google Scholar]
  21. Rahman M., Wright J. T., Jr, Douglas J. G. The role of the cytochrome P450-dependent metabolites of arachidonic acid in blood pressure regulation and renal function: a review. Am J Hypertens. 1997 Mar;10(3):356–365. doi: 10.1016/s0895-7061(96)00381-0. [DOI] [PubMed] [Google Scholar]
  22. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  23. Simpson A. E. The cytochrome P450 4 (CYP4) family. Gen Pharmacol. 1997 Mar;28(3):351–359. doi: 10.1016/s0306-3623(96)00246-7. [DOI] [PubMed] [Google Scholar]
  24. Truan G., Cullin C., Reisdorf P., Urban P., Pompon D. Enhanced in vivo monooxygenase activities of mammalian P450s in engineered yeast cells producing high levels of NADPH-P450 reductase and human cytochrome b5. Gene. 1993 Mar 15;125(1):49–55. doi: 10.1016/0378-1119(93)90744-n. [DOI] [PubMed] [Google Scholar]
  25. Williams P. A., Cosme J., Sridhar V., Johnson E. F., McRee D. E. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell. 2000 Jan;5(1):121–131. doi: 10.1016/s1097-2765(00)80408-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES